
Uniform Convergence

Where is it prove that one obtains the derivative of an infinite series by taking
derivative of each term ? - - -Niels Henrik Abel

We have already studied sequences and series of (constant) real numbers. In most problems,
however, it is desirable to approximate functions by more elementary ones that are easier to in-
vestigate. We have already done this on a few occasions. For example, we looked at the uniform
approximation of continuous functions by step, piecewise linear, and polynomial functions. Also,
we proved that each bounded continuous function on a closed bounded interval is a uniform limit
of regulated functions. Now all these approximations involve estimates on the distance between
the given continuous function and the elementary functions that approximate it. This in turn sug-
gests the introduction of sequences (and hence also series) whose terms are functions defined, in
most cases, on the same interval.

1 Sequence and Series of Functions

(i) For a set E ⊂ R, let us denote by F(E;R) the set of all functions from E to R. We are
interested in sequences and series in the sets F(E;R). For each sequence 〈fn〉 ∈ F(E;R)N

and each x ∈ E, the numerical sequence 〈fn(x)〉 ∈ RN may or may not converge. Let
fn : [0, 1] → R be a function, given by fn(x) = x

n ;x ∈ [0, 1], then 〈fn〉 is a sequence of
functions on [0, 1].

(ii) Let E ⊂ R and let 〈un〉 ∈ F(E;R)N. Then the formal sum

u1 + u2 + · · ·+ un + · · · =
∞∑
n=1

un

is called an infinite series of functions with general term un. For each x ∈ E, we have a
numerical series

u1(x) + u2(x) + · · ·+ un(x) + · · · =
∞∑
n=1

un(x)

For each n ∈ N, we can then define the partial sum

sn(x) = u1(x) + u2(x) + · · ·+ uk(x) =
n∑
k=1

uk(x)

This defines a sequence 〈sn〉 ∈ F(E;R)N.
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2 Small Overview On Uniform Convergence

2 Pointwise Convergence

Definition 1. [Pointwise Convergent Sequence of functions ]: For each 〈fn〉 ∈ F(E;R)N; let
E0 ⊂ E be the set of all points x ∈ E such that the numerical sequence 〈fn(x)〉 ∈ RN converges
and let

f(x) = lim
n−→∞

fn(x); ∀x ∈ E0 (1)

which, in detail, means that, corresponding to an ε > 0, ∃N = N(x; ε) ∈ N, depends on both x
and ε, such that

|fn(x)− f(x)| < ε; whenever n ≥ N (2)

The sequence 〈fn〉 is then said to be pointwise convergent (or simply convergent) on E0 and the
function f ∈ F(E0;R); defined by (1) is called the pointwise limit (or simply limit) of 〈fn〉 on
E0.

For example, let X = {1, 2, 3} and let fn(k) ≡ n(modk); k = 1, 2, 3 where n(modk) is the
remainder when n is divided by k. Let a = 1, then fn(1) = 0 for n ∈ N and hence fn(1) → 0.
On the other hand 〈fn(2)〉 = 〈1, 0, 1, 0, · · · 〉 and hence the sequence is not convergent. Hence the
sequence 〈fn〉 is not pointwise convergent on X .

We now look at a few examples and examine their pointwise convergence. Pay attention to
the graphs of these functions to get an idea of what is going on. As far as possible, we shall
investigate whether the given sequence is pointwise convergent and if so, we shall determine the
limit function.

EXAMPLE 1. (A discontinuous limit of continuous functions) Consider, the sequence 〈fn(x)〉n,

-
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1
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n = 1n = 2

n = 5

Figure 1: fn(x) for n = 1, 2, 3, 4, 5.

where, fn(x) = xn, for all x ∈ [0; 1] as
depicted in the Fig. 1. For x ∈ [0, 1).
We then have lim

n−→∞
fn(x) = 0. On

the other hand, lim
n−→∞

fn(1) = 1. The
sequence is therefore pointwise conver-
gent to a function f(x), on [0, 1], where

f(x) =

{
0; if 0 ≤ x < 1,

1; if x = 1

Note that each function fn(x) of the sequence is continuous on [0, 1], but the limit function is
not continuous on [0, 1], it has a jump discontinuity at the point x = 1.

EXAMPLE 2. Consider, the sequence 〈fn(x)〉n, where, fn(x) =
(

1 − nx

n+ 1

)n/2
;n ≥ 1 for

all x ∈ (−∞, 1]. We then have lim
n−→∞

fn(x) = 0, for 0 < x < 1 and lim
n−→∞

fn(x) = ∞, for

x < 0. On the other hand, lim
n−→∞

fn(0) = 1. Thus, the sequence 〈fn(x)〉n converges pointwise on

E0 = [0, 1] to the limit function f defined by

f(x) =

{
0; if 0 ≤ x ≤ 1,

1; if x = 0
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3 Small Overview On Uniform Convergence

EXAMPLE 3. Consider, the sequence 〈fn(x)〉n, where, fn(x) = xne−nx;n ≥ 1 and x ≥ 0, as

-
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Figure 2: (a) fn(x) = xne−nx (b) fn(x).

depicted in the Fig. 2(a). Now, f ′n(x) = nxn−1e−nx(1 − x) = 0, gives x = 1 and the maximum
value of fn(x) on [0,∞) is e−n. Therefore |fn(x)| ≤ e−n, and so lim

n→∞
fn(x) = 0 for all x ≥ 0.

The limit function in this case is identically zero on [0,∞).

EXAMPLE 4. Consider, the sequence 〈fn(x)〉n, where, for n ≥,

fn(x) =



0; for x < − 2
n

−n(2 + nx); for − 2
n ≤ x < −

1
n

n2x; for − 1
n ≤ x <

1
n

n(2− nx); for 1
n ≤ x <

2
n

0; for x ≥ 2
n

defined on (−∞,∞), as depicted in the Fig. 2(b). Here lim
n→∞

fn(0) = 0, for all n and lim
n→∞

fn(x) =

0 if n ≥ 2
|x| . Therefore

f(x) = lim
n→∞

fn(x) = 0; −∞ < x <∞,

so, the limit function in this case is identically zero on (−∞,∞).

EXAMPLE 5. (Uniform limits of differentiable functions need not be differentiable): Consider,

6

-
x

y

f1(x)

f2(x)

O

y = |x|

Figure 3: Uniform limits of differen-
tiable functions need not be differen-
tiable

the sequence 〈fn(x)〉n, where fn :

R→ R defined by fn(x) =

√
x2 +

1

n
,

n ∈ N, as depicted in the Figure 3,
for all x ∈ R. Here we clearly have
lim

n−→∞
fn(x) = |x| for all x ∈ R. Thus,

the sequence is pointwise convergent
on R. We also observe that fn is dif-
ferentiable on R for all n ∈ N with
f ′n(x) =

x√
x2 + 1

n

.

On the other hand, the limit function f(x) = |x| is not differentiable at x = 0.

EXAMPLE 6. Consider, the sequence 〈fn(x)〉n, where, fn(x) =
sin(n2x)

n
for all x ∈ R and

n ∈ N.
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4 Small Overview On Uniform Convergence

as depicted in the Figure 6.
Since | sinα| ≤ 1 for all α ∈
R, we have obvious estimate
|fn(x)| ≤ 1

n for any x ∈
R. Here the limit function, f ;
is the (identically) zero func-

tion. Indeed,
∣∣∣sin(n2x)

n

∣∣∣ ≤
1

n
holds for all x ∈ R and

n ∈ N and lim
n−→∞

1
n = 0.

-
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Figure 4: Graph of fn(x) of Example 6

Therefore, f(x) = f ′(x) = 0 for all x ∈ R. On the other hand,

f ′n(x) = n2 · cos(n2x)

n
= n cos(n2x)

does not converge to 0. In fact, lim
n−→∞

f ′n(0) = lim
n−→∞

(n) =∞.

EXAMPLE 7. Consider, the sequence 〈fn(x)〉n, where, fn(x) = [cos2(n!πx)], for all x ∈ [0, 1]

where, for each t ∈ R, [t] denotes the greatest integer ≤ t. If x = p
q with (relatively prime)

positive integers p and q; then n!x is an integer for all n ≥ q and hence cos2(n!πx) = 1. On the
other hand, if x ∈ Q, then cos2(n!πx) ∈ (0, 1). It follows that the (pointwise) limit function, f , is
given by

f(x) =

{
0; if x ∈ Q ∩ [0, 1],

1; if x ∈ [0, 1]/Q

In other words, f is the Dirichlet function which is nowhere continuous on [0, 1]. In particular, f
is not Riemann integrable. On the other hand, each fn has only a finite (in fact n! + 1) number of
discontinuity points and hence is Riemann integrable.

EXAMPLE 8. Consider the functions fn(x) = nx(1 − x2)n, for all x ∈ [0, 1]. The (pointwise)
limit, f ; is the identically zero function: f(x) = 0; ∀x ∈ [0, 1]. This is obvious for x = 0 and
x = 1, and for x ∈ (0, 1) it follows from the fact that lim

n−→∞
nαn = 0, for all α ∈ (0, 1). Now∫ 1

0
fn(x)dx = −n

2

[x(1− x2)n+1

n+ 1

]1
0

=
n

2(n+ 1)

It follows that lim
n−→∞

∫ 1

0
fn(x)dx =

1

2
; and yet

∫ 1
0 f(x)dx = 0.

EXAMPLE 9. For each positive integer n ∈ N, let En be the set of numbers of the form x =
p
q , where p and q are integers with no common factors and 1 ≤ q ≤ n. Define fn(x) ={

1; x ∈ En
0; x 6∈ En

. If x is irrational, then x 6∈ En, for any n, so fn(x) = 0, n ≥ 1. If x is

rational, then x ∈ En and fn(x) = 1 for all sufficiently large n. Therefore

f(x) = lim
n→∞

fn(x) =

{
1; x ∈ Q
0; x 6∈ Qc = R/Q
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5 Small Overview On Uniform Convergence

EXAMPLE 10. Let ql, q2, . . . be an enumeration of the rationals Q∩ [0, 1] in the interval I = [0, 1].
Consider the functions fn[0, 1]→ R defined by:

fn(x) =

{
1; if x ∈ {ql, q2, . . . , qn}
0; otherwise

Then the functions f3 converge pointwise to the f which is equal to 1 on the rationals and 0 on the
irrationals. Each fn is integrable because it is discontinuous at only a finite number of points. But

the pointwise limit is the Dirichlet function f(x) =

{
1; if x ∈ {qk : k ∈ N}
0; otherwise

This function is

not integrable on [0, 1].

EXAMPLE 11. Let 〈fn〉 be defined by fn(x) =
x2n

1 + x2n
, x ∈ R and n ∈ N. Therefore the limit

function is given by

f(x) = lim
n→∞

fn(x) = lim
n→∞

x2n

1 + x2n
=


0; |x| < 1
1
2 ; |x| = 1

1; |x| > 1

Note that each fn(x) is continuous on R but f is not continuous at ±1.

Definition 2. [Pointwise Convergent Series of Functions] The series
∞∑
n=1

un(x) is said to be point-

wise convergent (or simply convergent) on E0 ⊂ E with sum s ∈ F(E0;R)N if the sequence
〈sn〉 ∈ F(E;R)N of partial sums converges (pointwise) to the function s on E0. In other words,
if

s(x) = lim
n→∞

sn(x); ∀x ∈ E0

EXAMPLE 12. Consider, the series
∞∑
n=1

un(x), where, for each n ∈ N, un(x) = xn for all x ∈

(−1, 1) and u0 = 1. Then the series
∞∑
n=1

un(x) is (pointwise) convergent on (−1, 1) with sum

s(x) =

∞∑
n=1

un(x) =

∞∑
n=1

xn =
1

1− x

EXAMPLE 13. Consider the series
x

x+ 1
+

x

(x+ 1)(2x+ 1)
+ · · · ; x ≥ 0. Here

un(x) =
1

(n− 1)x+ 1
− 1

nx+ 1
; Sn(x) = 1− 1

nx+ 1

Thus, when x > 0, lim
n→∞

Sn(x) = 1 and when x = 0, lim
n→∞

Sn(x) = 0 as Sn(0) = 0. Let

y = Sn(x), then (y − 1)(x+ 1
n) = − 1

n . The curve y = s(x), when x ≥ 0,
As Sn(x) is certainly continuous, when the terms of the series are continuous, the approxima-

tion curves will always differ very materially from the curve y = s(x), when the sum of the series
is discontinuous.
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6 Small Overview On Uniform Convergence

consists of the part of the line y = 1

for which x > 0 and the origin. As
n increases, this rectangular hyperbola
(Fig. 5) approaches more and more
closely to the lines y = 1, x = 0. If
we reasoned from the shape of the ap-
proximate curves, we should expect to
find that part of the axis of y for which
0 < y < 1 appearing as a portion of
the curve y = s(x) when x ≥ 0.

6

-
O x

Sn(x)

y = 1

Figure 5: Example 13.

-

6Sn(x)

0.5

n = 5
n = 10

x
O

Figure 6: Example 14.

In this case, Sn(x) =
nx

1 + n2x2
and

lim
n→∞

Sn(x) = 0 for all values of x.

The sum function s(x) of the series is
continuous for all values of x, but we
shall see that the approximation curves
differ very materilly from the curve
y = s(x) in the neighbourhood of the
origin. The curve y = Sn(x) has a
maximum

EXAMPLE 14. Consider the series
∞∑
n=1

un(x), where, un(x) =
nx

1 + n2x2
− (n− 1)x

1 + (n− 1)2x2
.

at ( 1
n ,

1
2) and the minimum at (− 1

n ,−
1
2) as depicted in the Fig. 6. The points on the axis of

x just below the maximum and minimum move in towards the origin as n increases. And if we
reasoned from the shape of the curves y = Sn(x), we should expect to find the part of the axis of
y from −1

2 to 1
2 appearing as a portion of the curve y = s(x).

EXAMPLE 15. Find the sum function of
∞∑
n=1

(cosx)n on (0, π).

Solution: Let 〈Sn(x)〉 be the sequence of partial sums of the series
∞∑
n=1

un(x), where, un(x) =

(cosx)n. Thus

Sn(x) = cosx+ cos2 x+ · · ·+ cosn x =
cosx

1− cosx

(
1− cosn x

)
∴ lim

n→∞
Sn(x) = lim

n→∞

cosx

1− cosx

(
1− cosn x

)
=

cosx

1− cosx
; as | cosx| < 1 for 0 < x < π

Therefore, the sum function is given by S(x) = lim
n→∞

Sn(x) = cosx
1−cosx ; for 0 < x < π.

3 Uniform Convergence

The pointwise limit of a sequence of functions may differ radically from the functions in the
sequence.
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7 Small Overview On Uniform Convergence

(i) In Examples 1 and 2, each fn is continuous on (−∞, 1], but the limit function f is not
continuous.

(ii) In Example 4, the graph of each fn has two triangular spikes with heights that tend to∞ as
n→∞, while the graph of f(x) (the x-axis) has none.

(iii) In Examples 5 and 6, each fn is differentiable at x0, while the limit function f is not differ-
entiable at x0 or even if f ′(x0) exists, the 〈f ′n(x0)〉 exists need not converge to f ′(x0).

(iv) In Examples 8 and 9, each fn is integrable, while the limit function f is non integrable in
any compact interval.

There is nothing in Definitions 1 and 2 to preclude these apparent anomalies.

Definition 3. [Uniformly Convergent Sequence of functions ]: LetE ⊂ R. We say that a sequence
〈fn〉 ∈ F(E;R)N converges uniformly on E0 ⊂ E to a function f : E0 → R if, corresponding to
an ε > 0, ∃N = N(ε) ∈ N, depends on ε only, such that

|fn(x)− f(x)| < ε; whenever n ≥ N and ∀x ∈ E0 (3)

We interpret the uniform convergence in a geometric way. Draw the graphs of fn and f .

Put a band of width ε around
the graph of f . Condition (3)
states that if ε is any posi-
tive number, then for n > N

the graph of y = fn(x) lies
entirely below the graph of
f(x) + ε and entirely above
the graph of f(x) − ε as de-
picted on the Fig. 7. Thus
draw a tube V of vertical ra-
dius ε around the graph f .

-

6

V

f(x) + ε

f(x)− ε
x

y

O

�

]

fn(x)
f(x)

a b

Figure 7: Geometrical significance of uniform
convergence.

For n large, the graph of fn is contained in the ε-tube V around the graph of f . Notice that the
special feature of uniform convergence is that the rate at which fn(x) converges is independent of
x ∈ E. For example,

EXAMPLE 16. Consider, the sequence 〈fn(x)〉n as in Example 1). The sequence 〈fn(x)〉n
Indeed, if for ε = 1

10 , the point xn = n

√
1
2 is send by fn to 1

2 and thus not all points x satisfying
Eq. nm (3), when n is large. The graph of fn, as depicted in the figure 8, fails to lie in the ε-tube
V . Here, fn(x) is converging very rapidly to zero for x near zero but arbitrarily slowly to zero for
x near 1.

EXAMPLE 17. Prove that for the sequence 〈fn〉, fn → f pointwise on a finite set E(⊂ R) the
convergence is uniform.
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8 Small Overview On Uniform Convergence

-

6 r

xV

(1, 1)

O

y

f1 f2

x = 1
x = 0

Figure 8: Non uniform, pointwise con-
vergence.

of functions, where, fn : (0, 1)→ R is
given by fn(x) = xn for all x ∈ [0, 1],
as depicted in the Figure 1. For each
x ∈ (0, 1) it is clear that fn(x) → 0.
The (pointwise) limit function, f , is

f(x) =

{
0; if 0 ≤ x < 1,

1; if x = 1

Here the convergence is not uniform.

Solution: Let E = {x1, x2, · · · , xn} be a finite set in R. Since the sequence 〈fn〉 converges
pointwise to f , so ∀ε > 0, ∃Nk = Nk(xk; ε) such that

|fn(xk)− f(xk)| < ε; ∀n ≥ Nk; k = 1(1)n.

Let for a pre-assigned ε > 0, max
xk∈E

Nk(xk; ε) = N(ε). Therefore,

|fn(x)− f(x)| < ε; ∀n ≥ N(ε) and ∀x ∈ E

As N(ε) depends on ε and not on x, 〈fn〉 converges uniformly to f on E.

EXAMPLE 18. Let fn(x) =
x

n
for x ∈ R as depicted in the Fig.. The sequence 〈fn(0)〉 is a

constant sequence 〈0〉. Hence the limit function is f = 0. More generally, if a ∈ R, we get 〈 an〉 as
the pointwise sequence.

-

6
1
y

O x!

n = 1n = 2

n = 5

Figure 9: fn(x) for n = 1, 2, 3, 4, 5.

where, fn(x) = xn, for all x ∈ [0; 1] as
depicted in the Fig. 9. For x ∈ [0, 1).
We then have lim

n−→∞
fn(x) = 0. On the

other hand, lim
n−→∞

fn(1) = 1. The se-
quence is therefore point wise conver-
gent on [0, 1]. We note, however, that
the limit function

f(x) =

{
0; if 0 ≤ x < 1,

1; if x = 1

EXAMPLE 19. Show that 〈f ′n(x)〉 is uniformly convergent on [0, 1], where fn(x) =
ln(1 + n2x2)

n
for x ∈ [0, 1].

Solution: Consider the sequence of functions 〈fn〉 , defined by fn : [0, 1] → R, where, fn(x) =
log(1 + n2x2)

n
;x ∈ [−k, k], k > 0, as in the Fig. 10(a). Then 〈fn〉 converges uniformly to

f(x) = 0 on [0, 1]. Now, f ′n(x) =
2nx

1 + n2x2
, for x ∈ [0, 1], as depicted in the Fig. 10(b). Clearly,

fn(0)→ 0, as fn(0) = 0 for all n ≥ 1. Let x 6= 0. For a given ε > 0, we see that

|f ′n(x)− 0| =
∣∣∣ 2nx

1 + n2x2

∣∣∣ ≤ 2

n|x|
< ε
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9 Small Overview On Uniform Convergence

-

6

-

6

1O

1

x

f ′1
f ′2

f ′3

(b)(a) 1
x

y

O

j
f1

f2

f50

Figure 10: Figures of fn and f ′n

whenever n >
2

ε|x|
. Let us take N = [

2

ε|x|
] + 1 ∈ N, then

|f ′n(x)− 0| < ε for all n ≥ N

Therefore, 〈f ′n(x)〉 converges everywhere to the function f ′(x) = 0 (Fig. 10(b)). Observe that N
depends on both x and ε. Let

Mn = sup
x∈[0,1]

|f ′n(x)− f ′(x)| = sup
x∈[0,1]

2x

1 + n2x2
= sup

x∈[0,1]
g(x).

Then g′(x) = 2(1−n2x2)
(1+n2x2)2

, and g′(x) = 0 implies x = 1
n ∈ [0, 1]. Thus

Mn = sup
x∈[0,1]

|f ′n(x)− f ′(x)| = sup
x∈[0,1]

2x

1 + n2x2
= f ′n(

1

n
) =

1

n
.

Hence, Mn → 0 as n→∞, and consequently 〈f ′n〉 is uniformly convergent on [0, 1].

Definition 4. [Uniformly Convergent Series of Functions ]: The series
∞∑
n=1

un(x) is said to be

uniformly convergent on E0 if the sequence 〈sn〉 of partial sums is uniformly convergent on E0,
i.e., corresponding to a ε > 0, ∃ N(ε) ∈ N such that∣∣sn(x)− s(x)

∣∣ < ε, whenever n ≥ N and ∀x ∈ E0 (4)

where sn(x) is the nth partial sum of the series
∞∑
n=1

un(x).

THEOREM 1. If 〈fn〉 converges uniformly to f on E, the 〈fn〉 converges pointwise to f on E. The
converse is not always true, i.e., pointwise convergence does not imply uniform convergence .

Proof:

RESULT 1. John Kelley refers to the growing steeple: Consider, the sequence 〈fn(x)〉n,
So there is no question of uniform convergence. Even if the function have compact domain of

definition, and are uniformly bounded and uniformly continuous, pointwise convergence does not
imply uniform convergence.
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10 Small Overview On Uniform Convergence

where, fn : [0, 1]→ R defined as, for n ≥ 1,

fn(x) =


n2x; for 0 ≤ x ≤ 1

n

2n− n2x; for
1

n
≤ x ≤ 2

n

0; for
2

n
≤ x ≤ 1

defined on (−∞,∞), as depicted in the Fig. 11.
Here lim

n→∞
fn(x) = 0, for all x and fn converges

pointwise to the function f = 0. The graph of
fn, as depicted in the figure 11, fails to lie in the
ε-tube V .

-

6

x

y

O

f1

f4

V

Figure 11: Graphical representation of
fn(x)

3.1 Test for Uniform Convergence

THEOREM 2 (Weiestrass Mn test). A sequence 〈fn〉 ∈ F(E;R)N, where E ⊂ R; converges
uniformly on E0 ⊂ E if and only if, corresponding to an ε > 0, ∃N = N(ε) ∈ N, depends on ε
only, such that

Mn = sup
{
|fn(x)− f(x)| : x ∈ E0

}
< ε; whenever n ≥ N

Proof: Necessary part : Let 〈fn(x)〉n converges to f(x) uniformly on E0. Then corresponding
to an ε > 0, ∃N ∈ N such that∣∣fn(x)− f(x)

∣∣ < ε, for n ≥ N, ∀x ∈ E0

⇒ Mn = sup
{
|fn(x)− f(x)| : x ∈ E0

}
< ε, for n ≥ N

⇒ Mn → 0 as n→∞.

Sufficient part : Let Mn → 0 as n→∞, so corresponding to an ε > 0, ∃N1 ∈ N such that∣∣Mn − 0
∣∣ < ε, for n ≥ N1 ⇒Mn < ε, for n ≥ N1

⇒ sup
{
|fn(x)− f(x)| : x ∈ E0

}
< ε, for n ≥ N1

⇒
∣∣fn(x)− f(x)

∣∣ < ε for n ≥ N1; ∀x ∈ E0

Therefore, fn(x)→ f(x) uniformly on E0. 2

EXAMPLE 20. Consider, the sequence 〈fn(x)〉n, where, fn(x) =
x

1 + nx2
;x ∈ [a, b]. For any

x ∈ [a, b],

f(x) = lim
n−→∞

fn(x) = lim
n−→∞

x

1 + nx2
= 0

Therefore, 〈fn(x)〉n converges pointwise to zero on [a, b]. Now,∣∣fn(x)− f(x)
∣∣ =

∣∣∣ x

1 + nx2
− 0
∣∣∣ =

x

1 + nx2
= g(x)(say).
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11 Small Overview On Uniform Convergence

For, x > 0, using A.M. ≥ G.M., we have

1
x + nx

2
≥
√

1

x
nx⇒ x

1 + nx2
≤ 1

2
√
n

Therefore, fn(x) = 1
2
√
n

, when x = 1√
n
∈ [a, b]. Thus,

Mn = sup
{∣∣∣ x

1 + nx2
− 0
∣∣∣ : x ∈ [0,∞)

}
=

1

2
√
n
→ 0 as n→∞

Therefore 〈fn(x)〉 is uniformly convergent on [a, b].

EXAMPLE 21. Consider, the sequence 〈fn(x)〉n, where, fn(x) = xn for all x ∈ [0, 1]. The

(pointwise) limit function, f , is f(x) =

{
0; if 0 ≤ x < 1,

1; if x = 1
Now

lim
n→∞

Mn = lim
n→∞

sup
{
|xn − f(x)| : x ∈ [0, 1]

}
= lim

n→∞
1 = 1 6= 0

Therefore, the convergence is not uniform.

EXAMPLE 22. Consider, the sequence 〈fn(x)〉n, where fn : R→ R

defined by fn(x) =

√
x2 +

1

n
,

n ∈ N, as depicted in the Figure
12, for all x ∈ R. Here we clearly
have lim

n−→∞
fn(x) = |x| for all

x ∈ R. So, the sequence 〈fn(x)〉n
has pointwise limit f(x) = |x|,
for all x ∈ R. Now

6

-
x

y

f1(x)

f2(x)

O

y = |x|x = −1 x = 1

Figure 12: Graph of fn as in example 22

Mn = sup
{∣∣∣√x2 +

1

n
− |x|

∣∣∣ : x ∈ R
}

= sup
{ 1/n√

x2 + 1
n + |x|

: x ∈ R
}

=
1/n

1/
√
n

∴ lim
n→∞

Mn = lim
n→∞

sup
{∣∣∣√x2 +

1

n
− |x|

∣∣∣ : x ∈ R
}

= lim
n→∞

1√
n

= 0

Thus the convergence is uniform. We draw an ε-band around the limit function. Indeed, the graph
of fn, as depicted in the figure 12, lie in the ε-tube V . This also ensures geometrically that the
convergence is uniform.

EXAMPLE 23. The sequence 〈fn(x)〉n, where, fn(x) =
sin(n2x)

n
for all x ∈ R and n ∈ N has

pointwise limit f(x) = 0, for all x ∈ R. Since
∣∣∣sin(n2x)

n

∣∣∣ ≤ 1

n
, for all x ∈ R and n ∈ N, so

lim
n→∞

Mn = lim
n→∞

sup
{∣∣∣sin(n2x)

n
− 0
∣∣∣ : x ∈ R

}
= lim

n→∞

1

n
= 0

Thus the convergence is uniform.
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12 Small Overview On Uniform Convergence

EXAMPLE 24. Consider, the sequence 〈fn(x)〉n, where, fn(x) =
x

nx+ 1
for all x ∈ [0, 1]. For a

given x ∈ [0, 1],

f(x) = lim
n−→∞

fn(x) = lim
n−→∞

x

nx+ 1
= 0

Therefore 〈fn(x)〉 converges pointwise to zero on [0, 1]. Now,∣∣fn(x)− f(x)
∣∣ =

∣∣ x

nx+ 1
− 0
∣∣ =

x

nx+ 1
= g(x)(say).

Then, g′(x) = 1
(nx+1)2

> 0,∀x ∈ [0, 1], so, g(x) is strictly increasing function on [0, 1]. Thus
g(x) attains its maximum value at x = 1. Therefore,

Mn = sup
x∈[0,1]

∣∣fn(x)− f(x)
∣∣ = sup

x∈[0,1]

x

nx+ 1
=

1

n+ 1

Now , Mn → 0 as n→∞. Therefore 〈fn(x)〉 converges uniformly to 0 on [0, 1].

EXAMPLE 25. Consider, the sequence of functions 〈fn(x)〉n, where, fn(x) =
nx

1 + n2x2
for all

-

6

1

y

x1)

n = 1

n = 2

n = 3
n = 4

n = 5

Figure 13: fn(x) for n = 1, 2, 3, 4, 5.
x ∈ [a, b], containing 0. The graphs of fn for n = 1, 2, 3, 4 are shown in the Fig. 13. For any
x ∈ [a, b] containing zero,

f(x) = lim
n−→∞

fn(x) = lim
n−→∞

nx

1 + n2x2
= 0

Therefore, 〈fn(x)〉n is converges pointwise to zero on [a, b]. Now,∣∣fn(x)− f(x)
∣∣ =

∣∣∣ nx

1 + n2x2
− 0
∣∣∣ =

nx

1 + n2x2
= g(x)(say).

Then, g′(x) =
n(1− n2x2)
(1 + n2x2)2

. Thus g′(x) = 0⇒ x = ± 1
n . Also

g′′(x) = n
[(1 + n2x2)2 · (−2n2x) + 2(1− n2x2) · 2(1 + n2x2)

(1 + n2x2)4

]
or, g′′(x)

∣∣∣
x= 1

n

= −2n3x · 3− n2x2

(1 + n2x2)4
|x= 1

n
= −n

2

4
< 0

Thus g(x) attains its maximum value at x = 1/n. Therefore,

Mn = sup
{∣∣∣ nx

1 + n2x2
− 0
∣∣∣ : x ∈ [a, b]

}
=

1

2
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13 Small Overview On Uniform Convergence

Now , Mn 9 0 as n → ∞. Therefore 〈fn(x)〉 is not uniformly convergent on any interval
containing 0. Also, The graph of fn, as depicted in the figure 13, fails to lie in the ε-tube V , about
f = 0, so that non uniform convergence is verified.

EXAMPLE 26. Consider, the sequence 〈fn(x)〉n, where, fn(x) = fn(x) = nxe−nx
2
, x ∈ [0,∞).

For any x ∈ [0,∞),

f(x) = lim
n−→∞

fn(x) = lim
n−→∞

nx

enx2
= lim

n−→∞

x

x2enx2
= 0

Therefore, 〈fn(x)〉n is converges pointwise to zero on [0,∞). Now,∣∣fn(x)− f(x)
∣∣ =

∣∣∣ nx
enx2

− 0
∣∣∣ =

nx

enx2
= g(x)(say).

Then, g′(x) =
n− 2n2x2

enx2
. Thus g′(x) = 0⇒ n− 2n2x2 = 0⇒ x = ± 1√

2n
. Also

g′′(x)
∣∣∣
x= 1√

2n

=
[
2n2x

(2nx2 − 3)

enx2

]
x= 1√

2n

< 0

Thus g(x) attains its maximum value at x = 1√
2n

. Therefore,

Mn = sup
{∣∣∣ nx
enx2

− 0
∣∣∣ : x ∈ [0,∞)

}
=

√
n

2e

Now , Mn 9 0 as n→∞. Therefore 〈fn(x)〉 is not uniformly convergent on [0,∞).

EXAMPLE 27. Thus for the sequence 〈fn〉, fn → f pointwise on a point set E ⊂ R, the conver-
gence is uniform.

EXAMPLE 28. Verify that the sequence 〈fn〉, where fn(x) = n sin
√

4π2n2 + x2 converges uni-
formly on [0, k], k > 0. Does 〈fn〉 converge uniformly on R?

Solution: The function sin
√

4π2n2 + x2 can be written as

sin
√

4π2n2 + x2 = sin
(

2nπ

√
1 +

x2

4π2n2
+ 2nπ − 2nπ

)
= sin 2nπ

(√
1 +

x2

4π2n2
− 1
)

= sin
(√

4π2n2 + x2 − 2nπ
)

= sin
x2√

4π2n2 + x2 + 2nπ

Therefore, the limit function f is given by

f(x) = lim
n→∞

fn(x) = lim
n→∞

n · sin x2√
4π2n2 + x2 + 2nπ

= lim
n→∞

n
[ x2√

4π2n2 + x2 + 2nπ
− 1

3!

( x2√
4π2n2 + x2 + 2nπ

)3
+ · · ·

]
= lim

n→∞

[ x2√
4π2 + x2

n2 + 2π
− 1

3!n

( x2√
4π2 + x2

n2 + 2π

)3
+ · · ·

]
=
x2

4π
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14 Small Overview On Uniform Convergence

Now, using the fact that sinα ≥ α− α3

3!
, we get for x ∈ [0, k],

∣∣∣x2
4π
− n sin

√
4π2n2 + x2

∣∣∣ =
∣∣∣x2
4π
− n sin

x2√
4π2n2 + x2 + 2nπ

∣∣∣
≤
∣∣∣x2
4π
− x2√

4π2n2 + x2 + 2nπ
+

1

3!

( x2√
4π2n2 + x2 + 2nπ

)3∣∣∣
≤ k2

4π

(
1− 2

1 +
√

1 + k2

4π2n2

)
+
n

3!

k5

8n3π3
= Mn(say)

Now, Mn → 0 as n → ∞, so the given sequence of functions is uniformly convergent on [0, k].
For x ∈ R, by the inequality | sinx| ≤ |x|, we obtain∣∣∣x2

4π
− n sin

√
4π2n2 + x2

∣∣∣ =
∣∣∣x2
4π
− n sin

x2√
4π2n2 + x2 + 2nπ

∣∣∣
≥
∣∣∣x2
4π
− x2√

4π2n2 + x2 + 2nπ

∣∣∣ ≥ x2

4π

(
1− 2

1 +
√

1 + x2

4π2n2

)
,

which shows that the convergence cannot be uniform on R.

THEOREM 3 (Weierstrass Mn test for the series of functions). The series
∞∑
n=1

un(x) defined on I

is uniformly convergent on I if ∃ a sequence of positive constants {Mn} such that∣∣un(x)
∣∣ ≤Mn,∀na) ΣMn is convergentb)

Proof: Let Sn is the nth partial sum of the series
∑
un(x). Then

Sn(x) = u1(x) + u2(x) + · · ·+ un(x) =
n∑
r=1

ur(x).

Let ε > 0 be chosen arbitrary,since
∑
Mn is convergent by Cauchy’s criteria, ∃N0(ε) ∈ N such

that ∣∣Pn − Pm∣∣ < ε, for n > m > N0,

where, Pn = nth partial sum of
∑
Mn. Therefore,

Mm+1 +Mm+2 + · · ·+Mn < ε, for n > m > N0

Therefore, if n > m > N0 we obtain∣∣∣Sn(x)− Sm(x)
∣∣∣ =

∣∣∣ n∑
r=1

ur(x)−
m∑
r=1

ur(x)
∣∣∣ =

∣∣∣ n∑
r=m+1

ur(x)
∣∣∣

≤
n∑

r=m+1

∣∣∣ur(x)
∣∣∣ ≤ n∑

r=m+1

Mr < ε, for n > m > N0, ∀x ∈ I

Therefore ,Σun(x) converges uniformly on I .
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15 Small Overview On Uniform Convergence

EXAMPLE 29. Consider the series of functions
∞∑
n=1

sin nx

n2
on x ∈ (−∞,∞). Here

un(x) =
sin nx

n2
⇒
∣∣∣un(x)

∣∣∣ ≤ 1

n2
= Mn, ∀x ∈ (−∞,∞)

Now,
∑

Mn =
∑ 1

n2
is a hyperhermonic series with p = 2 > 1, so convergent. Therefore, by

Weierstrass Mn test, the given series of functions is uniformly convergent on (−∞,∞).

EXAMPLE 30. Consider the series of functions
∞∑
n=1

x

n(1 + nx2)
;x ∈ [a, b].

un(x) =
x

n(1 + nx2)
⇒
∣∣∣ x

n(1 + nx2)

∣∣∣ < 1

n2

Now,
∑
Mn =

∑ 1
n2 is a hyper hermonic series with p = 2 > 1,so convergent. Then by Mn test

the given series of functions
∞∑
n=1

x

n(1 + nx2)
is uniformly convergent on [a, b].

EXAMPLE 31. Consider the series of functions
∞∑
n=1

sinnx

np
, p > 1, x ∈ R. Now

∣∣∣sinnx
np

∣∣∣ ≤ 1

np
; ∀x ∈ R

The series
∞∑
n=1

1

np
is a Hyper-harmonic p-series with p > 1 and hence convergent. Therefore, by

Weierstrass M -test the given series of functions is uniformly convergent for all x ∈ R.

EXAMPLE 32. Consider the series of functions
∞∑
n=1

sin(nx2 + x2)

n(n+ 1)
, x ∈ R. Now

∣∣∣sin(nx2 + x2)

n(n+ 1)

∣∣∣ ≤ 1

n(n+ 1)
<

1

n2
; ∀x ∈ R

The series
∞∑
n=1

1

n2
is a Hyper-harmonic p-series with p = 2 > 1 and hence convergent. Therefore,

by Weierstrass M -test the given series of functions is uniformly convergent for all x ∈ R.

EXAMPLE 33. Test the covergence for Σ
x

np + x2nq
on any finite interval [a, b].

Solution: First let p > 1, q ≥ 0. Let α ≥ max{|a|, |b|}, then∣∣∣un(x)
∣∣∣ =

∣∣∣ x

np + x2nq

∣∣∣ ≤ α

np
= Mn (say)

Now,
∑

Mn =
∑ α

np
is a hyper harmonic series with p > 2, so convergent. By Mn test∑ x

np + x2nq
is uniformly convergent on [a, b].

Case -II: Let 0 < p ≤ 1 and p + q ≥ 2. Then
∣∣un(x)

∣∣ attains its maximum value 1
2n(p+q)/2 at the

point where x2nq = np. Now ,
∑
Mn is a hyper hermonic series converges as p+ q ≥ 2.

Hence by Mn test the given series uniformly convergent.
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16 Small Overview On Uniform Convergence

EXAMPLE 34. Prove or disprove:
∑
n

2−n cos(3nx) represents an everywhere continuous func-

tion.

Solution: Let s(x) =
∑

n 2−n cos(3nx) =
∑

n un(x), where un(x) = 2−n cos(3nx);n ∈ N and
x ∈ R. Thus

|un(x)| = |2−n cos(3nx)| ≤ 1

2n
= Mn, say, ∀n ∈ N

Now
∑
Mn =

∑ 1
2n = 1. So the series

∑
Mn is convergent. Hence, by Weierstrass M -test, the

given series is uniformly convergent on R. Again, un(x) = 2−n cos(3nx) is continuous ∀x ∈ R
and ∀n ∈ N. So the sum function f is everywhere continuous on R.

EXAMPLE 35. Consider the series
∑
un(x) for which the sum to first n-terms is Sn(x) =

ln(1 + n4x2)

2n2
; 0 ≤ x ≤ 1. Here

S(x) = lim
n→∞

Sn(x) = 0; 0 ≤ x ≤ 1

∴ S′(x) = 0; ∀x ∈ [0, 1]

Again,
Thus we see that

∑
u′n(x) does not converge uniformly on [0, 1] but the series may be differ-

entiated term-by-term.

EXAMPLE 36. Define a function f(x) =


0; if x ≤ 0

nx2; if 0 < x ≤ 1

2n

x− 1

4n
; if

1

2n
< x <∞

The sequence of func-

tions 〈fn〉 converge uniformly on the entire real line R to the function f , where, f(x) =

{
0; if x ≤ 0

x; if x > 0

Notice that each of the functions fn is continuously differentiable on the entire real line, but f is
not differentiable at 0.

THEOREM 4 (Cauchy’s criteria for Uniform Convergence). Let E ⊂ R and 〈fn〉 ∈ F(E;R)N.
Then 〈fn〉n converges uniformly on E0 ⊂ E if and only if, corresponding to an ε > 0, ∃N =

N(ε) ∈ N, depends on ε only, such that∣∣∣fm(x)− fn(x)
∣∣∣ < ε; whenever m,n ≥ N and ∀x ∈ E0

Proof: Necessary part : Let 〈fn(x)〉n converges uniformly on E0 to a limit function f(x). Then
corresponding to an ε > 0, ∃ positive integers N1, N2 ∈ N independent of x such that∣∣∣fn(x)− f(x)

∣∣∣ < ε

2
, for n ≥ N1 and ∀x ∈ E0∣∣∣fm(x)− f(x)

∣∣∣ < ε

2
, for m ≥ N2 and ∀x ∈ E0

Let N = max{N1, N2} ∈ N, then ∀x ∈ E0 we have∣∣∣fm(x)− fn(x)
∣∣∣ =

∣∣∣fm(x)− f(x) + f(x)− fn(x)
∣∣∣

≤
∣∣∣fm(x)− f(x)

∣∣∣+
∣∣∣fn(x)− f(x)

∣∣∣
<

ε

2
+
ε

2
= ε, for n ≥ N.
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17 Small Overview On Uniform Convergence

Therefore, the condition holds.
Sufficient part : Conversely, if the condition of the theorem is satisfied, then, for each x ∈ E0,
the numerical sequence 〈fn(x)〉n is a Cauchy sequence in R and hence converges. Let

f(x) = lim
n→∞

fn(x); ∀x ∈ E0.

For a given ε > 0, we can find N ∈ N such that∣∣∣fm(x)− fn(x)
∣∣∣ < ε; whenever m,n ≥ N and ∀x ∈ E0

For fixed n, let m→∞ in the above equation, we find that∣∣∣f(x)− fn(x)
∣∣∣ < ε; whenever n ≥ N and ∀x ∈ E0

Since ε > 0 was arbitrary, it follows that, sequence of functions 〈fn(x)〉n converges to f uniformly
on E0, as desired.

Deduction 3.1. A sequence 〈fn〉 ∈ F(E;R)N, where E ⊂ R; converges uniformly on E0 ⊂ E if
and only if sup

{
|fm(x)− fn(x)| : x ∈ E0

}
→ 0 as m,n→∞.

EXAMPLE 37. Determine whether the sequence 〈fn〉 of functions converges uniformly on E:

fn(x) =
x2

x2 + (nx− 1)2
;E = [0, 1]a) fn(x) =

√
n+ 1 sinn x cosx;E = Rb)

fn(x) = n
√

2n + |x|n;E = Rc)

Solution: a) The limit function f is given by

f(x) = lim
n→∞

fn(x) = lim
n→∞

x2

x2 + (nx− 1)2
= 0.

Now, f ′n(x) = 2x(nx−1)3
[x2+(nx−1)2]2 , so, f ′n(x) = 0 gives x = 1

n . Thus

Mn = sup
x∈[0,1]

∣∣∣ x2

x2 + (nx− 1)2
− 0
∣∣∣ = fn

( 1

n

)
= 1.

As Mn 6→ 0 as n → ∞, hence by Weierstrass Mn-test the given sequence of functions is not
uniformly convergent on E.

b) The limit function f is given by

f(x) = lim
n→∞

fn(x) = cosx lim
n→∞

√
n+ 1 sinn x = 0.

Here, we use Weierstrass Mn-test. For that

Mn = sup
x∈R

∣∣∣√n+ 1 sinn x cosx
∣∣∣ =
√
n+ 1 sup

x∈R

∣∣∣ sinn x cosx
∣∣∣
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18 Small Overview On Uniform Convergence

Now we calculate supreme value of g(x) = sinn x cosx, Now, log g(x) = n log(sinx) +

log(cosx), thus the supreme value of g is given by the equation tan2 x = n. Thus,

Mn =
√
n+ 1 sup

x∈R

∣∣∣ sinn x cosx
∣∣∣ =
√
n+ 1 ·

( n

n+ 1

)n/2
· 1√

n+ 1

=
( n

n+ 1

)n/2
→ 1√

e
6→ 0 as n→∞

Hence by Weierstrass Mn-test the given sequence of functions is not uniformly convergent on E.
c) The limit function f is given by

f(x) = lim
n→∞

fn(x) = lim
n→∞

n
√

2n + |x|n = lim
n→∞

2
n

√
1 +

( |x|
2

)n
=

{
2; |x| ≤ 2

|x|; |x| > 2

We see that, all fn’s as well as the limit function is continuous, which implies that convergence is
uniform.

EXAMPLE 38. Determine whether the sequence 〈fn〉 of functions converges uniformly on E:

fn(x) =
1

1 + (nx− 1)2
;E = [0, 1]a) fn(x) = nxn(1− x);E = [0, 1]b)

fn(x) = tan−1
( 2x

x2 + n3

)
;E = Rc)

Solution: a) The limit function f is given by

f(x) = lim
n→∞

fn(x) = lim
n→∞

1

1 + (nx− 1)2
=

{
1
2 ; x = 0

0; x ∈ (0, 1]

We see that, all fn’s are continuous onE, while the limit function is not continuous, which implies
that convergence is not uniform.

b) Since xn(1− x)→ 0 as n→∞, so, the limit function f is given by

f(x) = lim
n→∞

fn(x) = lim
n→∞

nxn(1− x) = 0.

Now, f ′n(x) = nxn−1[n− (n+ 1)x], so, f ′n(x) = 0 gives x = n
n+1 . Thus

Mn = sup
x∈[0,1]

|nxn(1− x)− 0| = fn

( n

n+ 1

)
=

nn

(n+ 1)n+1

∴ lim
n→∞

Mn = lim
n→∞

1

n
· 1(

1 + 1
n

)n+1 =
1

e
· 0 = 0

Hence by Weierstrass Mn-test the given sequence of functions is uniformly convergent on E.
c) The limit function f is given by

f(x) = lim
n→∞

fn(x) = lim
n→∞

tan−1
( 2x

x2 + n3

)
= 0

Now, f ′n(x) = 2n3−2x2
4x2+(x2+n3)2

, so, f ′n(x) = 0 gives x = n
√
n. Thus

Mn = sup
x∈R

∣∣∣ tan−1
( 2x

x2 + n3

)
− 0
∣∣∣ = fn

(
n
√
n
)

= tan−1
( 1

n
√
n

)
Therefore, Mn → 0 as n → ∞, so by Weierstrass Mn-test the given sequence of functions is
uniformly convergent on E to 0.
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19 Small Overview On Uniform Convergence

EXAMPLE 39. Determine whether the series
∞∑
n=1

un(x) of functions converges uniformly on E:

un(x) =
π

2
−tan−1

(
n2(1+x2)

)
;E = Ra) un(x) = 2n sin

1

3nx
;E = (0,∞)b)

un(x) = ln
(

1+
x2

n · ln2 n

)
;E = (−k, k), k >

0

c)

Solution: a) We know, tan−1 x+ cot−1 x = tan−1 x+ tan−1 1
x = π

2 . Using that identity, we get

un(x) =
π

2
− tan−1

(
n2(1 + x2)

)
= tan−1

1

n2(1 + x2)

<
1

n2(1 + x2)
≤ 1

n2
= Mn( say);∀x ∈ R.

Now,
∞∑
n=1

Mn =
∞∑
n=1

1
n2 is a hyperharmonic series with p = 2(> 1), so convergent. Therefore, by

Weierstrass Mn-test the given series of functions is uniformly convergent on R.
b) For the problem, we use Cauchy criterion for uniform convergence. Let Sn(x) be the nth

partial sum of the series, then it is given by

Sn(x) = 2 sin
1

3x
+ 22 sin

1

32x
+ · · ·+ 2n sin

1

3nx

If 0 < 1
3nx ≤

π
2 , then

|Sn+m(x)− Sn(x)| = 2n+1 sin
1

3n+1x
+ · · ·+ 2m+n sin

1

3m+nx

≥ 2n+1 2

π

1

3n+1x
+ · · ·+ 2m+n 2

π

1

3m+nx

≥ 2n+1 2

π

1

3n+1x

Putting, x = 1
3n , we obtain∣∣∣Sm+n

( 1

3n

)
− Sn

( 1

3n

)∣∣∣ ≥ 2n+2

3π
≥ 23

3π

Thus by Cauchy criteria, the series of functions does not converge uniformly on E.
c) Here, we use the Weierstrass Mn-test. Now

un(x) = ln
(

1 +
x2

n · ln2 n

)
= 1 +

x2

n · ln2 n
+

x4

n2 · ln4 n
+ · · ·

≤ x2

n · ln2 n
<

k2

n · ln2 n
= Mn

By Cauchy’s condensation test the series
∞∑
n=1

Mn =
∞∑
n=1

k2

n·ln2 n is convergent. Therefore, the given

series of functions is uniformly convergent on E.

EXAMPLE 40. Determine whether the series
∞∑
n=1

un(x) of functions converges uniformly on E:
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20 Small Overview On Uniform Convergence

un(x) =
xn

n!
;E = Ra) un(x) =

sin(nx)√
n

;E = [0, 2π]b)

un(x) =
cos2(nx)

n2
;E = Rc)

Solution: a) Let Sn(x) be the nth partial sum of the series. Then, for any n ≥ 1, we have

sup
x∈R
|Sn(x)− Sn−1(x)| = sup

x∈R
|fn(x)| ≥ |fn(n)| = nn

n!
≥ 1

Thus by Cauchy criteria, the series of functions does not converge uniformly on E.

b) First note that we do have pointwise convergence. Next notice that
2x

π
≤ sinx for any

x ∈ [0, π4 ]. Let n ≥ 10 and h ∈ N such that 2n ≤ n + h < n
√
nπ4 . Thus for any k ∈ N with

n ≤ k < n+ h, we have
k

n
√
n
<
π

4
. Hence

sin
( k

n
√
n

)
≥ 2

π

k

n
√
n
⇒

n+h∑
k=n

1√
k

sin
( k

n
√
n

)
≥

n+h∑
k=n

1√
k

2

π

k

n
√
n

or,
n+h∑
k=n

1√
k

sin
( k

n
√
n

)
≥

n+h∑
k=n

2

π

√
k

n
√
n
≥

n+h∑
k=n

2

π

√
n

n
√
n
≥ 2

π

This obviously show that sup
x∈[0,2π]

∣∣∣ n+h∑
k=n

1√
k

sin
( k

n
√
n

)∣∣∣ ≥ 2

π
for any n ≥ 0 and h ∈ N such that

2n ≤ n+ h < n
√
nπ4 . Therefore, the convergence will not be uniform on [0, 2π].

c) Here, we use the Weierstrass Mn-test. Now

sup
x∈R

∣∣∣fn(x)− 0
∣∣∣ = sup

x∈R

∣∣∣cos2(nx)

n2

∣∣∣ ≤ 1

n2
= Mn( say);∀x ∈ R.

Now,
∞∑
n=1

Mn =
∞∑
n=1

1
n2 is a hyperharmonic series with p = 2(> 1), so convergent. Therefore, by

Weierstrass Mn-test the given series of functions is uniformly convergent on R.

THEOREM 5. [Dini’s Theorem of uniform convergence of a sequence ] Let I ⊂ R be a compact
interval and suppose that 〈fn〉 ∈ F(E;R)N is a sequence of continuous functions converging
pointwise to a continuous function f : I → R. If 〈fn〉 is increasing (i.e., fn(x) ≤ fn+1(x) for
all x ∈ I and n ∈ N) or decreasing (i.e., fn(x) ≥ fn+1(x) for all x ∈ I and n ∈ N), then 〈fn〉
converges to f uniformly on I .

Proof: The uniform convergence of 〈fn〉 to f is equivalent to the uniform convergence of (f−fn)

(or fn − f ) to 0. Let gn = f − fn (resp. gn = fn − f ) if 〈fn〉 is increasing (resp., decreasing).
Then 〈gn〉 is a decreasing sequence of continuous nonnegative functions converging pointwise to
0 on I . The theorem is proved if we show that this convergence is in fact uniform on I . Let ε > 0

be given. For each x ∈ I lim gn(x) = 0 implies that we can pick N(x) ∈ N with gN(x)(x) <
ε

2
.

Since gN(x)(x) is continuous at x, there is a δ(x) > 0 such that

gN(x)(t) < ε; ∀t ∈ (x− δ(x), x+ δ(x)) (5)
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21 Small Overview On Uniform Convergence

Since I is compact, we can cover I by a finite number of intervals Ir = (xr − δ(xr), xr +

δ(xr)); 1 ≤ r ≤ k. Let N = max{N(x1), N(x2), · · · , N(xk)}. Now, for any t ∈ I , we have
t ∈ Ir for some r and, by Eq. (5) gN(xr)(t) <

ε

2
. But since N ≥ N(xr) and 〈gn〉 is decreasing,

we have

0 ≤ gN ≤ gN(xr)(t) < ε; ∀t ∈ I

Therefore, we indeed have

gn(x) ≤ gN (x) < ε; for n ≥ N and ∀x ∈ I

and the proof is complete. 2

EXAMPLE 41. (i) Consider the sequence 〈fn〉, where, fn(x) = xn−1(1− x); x ∈ [0, 1]. Now

lim
n→∞

fn(x) = lim
n→∞

xn−1(1− x) = 0; for x ∈ [0, 1]

The sequence 〈fn〉 converges on [0, 1] to the function f(x) = 0 for x ∈ [0, 1]. Each fn is
continuous on [0, 1], also f(x) is continuous on [0, 1]. Now, for each each x ∈ [0, 1]

fn+1(x)− fn(x) = (xn − xn+1)− (xn−1 − xn)

= −xn−1(x− 1)2 ≤ 0

i.e., 〈fn〉 is monotone non-increasing for each x ∈ [0, 1]. By Dini’s Theorem 5, the conver-
gence of the sequence is uniform on [0, 1].

(ii) Consider the sequence 〈fn〉, where, f1(x) =
√
x, fn(x) =

√
xfn−1(x); for n ≥ 2, x ∈

[0, 1]. Therefore, f2(x) =
√
x · x1/2 = x

1
2
+ 1

22 , · · · , fn(x) = x
1
2
+ 1

22
+···+ 1

2n .

At x = 0, lim
n→∞

fn(x) = lim
n→∞

x1−
1
2n = x, i.e., 〈fn〉 converges to f on [0, 1], where

f(x) = x, x ∈ [0, 1]. Each f(x) converges to f on [0, 1]. Each f(x) is continuous on [0, 1]

and the limit function is also continuous on [0, 1]. Also

fn+1(x)− fn(x) = x

1

2
+

1

22
+ · · ·+ 1

2n
[
x

1

2n+1 − 1
]

Therefore, 〈fn〉 is monotone decreasing on [0, 1]. By Dini’s Theorem 5, the convergence of
the sequence is uniform on [0, 1].

RESULT 2. The following examples shows that each of the conditions (compactness of E, con-
tinuity of the limit function, continuity of fn and monotonicity of the sequence 〈fn〉) in Dini’s
theorem 5 is essential.

(i) To show that the compactness of E is essential, consider fn : (0, 1) → R defined by

fn(x) =
1

1 + nx
; for x ∈ (0, 1). The sequences has pointwise limit f = 0. Now

Mn = sup
x∈(0,1)

|fn(x)− f(x)| = 1.

As Mn 6→ 0 as n→∞, therefore, the convergence is not uniform.
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22 Small Overview On Uniform Convergence

The assumption of continuity of
fn can not be omitted. Consider

fn(x) =


0; if x = 0 or

1

n
≤ x ≤ 1

1; if 0 < x <
1

n
as depicted in the Fig. 14, are not contin-
uous. They form a monotonic sequence
pointwise convergent to zero on [0, 1], but
the convergence is not uniform.

-

6b b1

1
n 1 x

y

Figure 14: Graph of fn

(ii) The continuity of the limit function is also essential. Indeed, the sequence fn : [0, 1] → R,
defined by fn(x) = xn; for x ∈ [0, 1] fails to converge uniformly on [0, 1] as in the Example
16.

(iii) Consider, fn : [0, 1]→ R defined by

-

6

x1
n

1
2n

O

n
y

Figure 15: Graph of fn

fn(x) =
2n2x; if 0 ≤ x ≤ 1

2n

n− 2n2
(
x− 1

2n

)
; if

1

2n
< x ≤ 1

n

0; if
1

n
< x ≤ 1

as depicted in the Fig. 15

The functions fn(x) are continuous and form a sequence which is pointwise convergent to
zero function on [0, 1]. Therefore,

∫ 1
0 f(x)dx = 0. Now, for each n ∈ N,∫ 1

0
fn(x)dx =

∫ 1
2n

0
2n2x dx+

∫ 1/n

1
2n

[
n− 2n2

(
x− 1

2n

)]
dx+

∫ 1

1/n
0 dx

= 2n2
[x2

2

] 1
2n

0
+
[
nx− 2n2

(x2
2
− x

2n

)]1/n
1
2n

=
1

2

Therefore, lim
n→∞

∫ 1

0
fn(x)dx =

1

2
6= 0

∫ 1

0
f(x)dx. So the convergence is not uniform.

EXAMPLE 42. Let un : [1, 2]→ R be defined by un(x) =
x

(1 + x)n
.

(i) Show that
∞∑
n=1

un(x) converges for x ∈ [1, 2]

(ii) Use Dini’s theorem to show that the convergence is uniform.

(iii) Does the following hold:
∫ 2

1

( ∞∑
n=1

un(x)
)
dx =

∞∑
n=1

∫ 2

1
un(x)dx?
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Solution: (a) Let 1
|1+x| < 1, that is, |1 + x| > 1. Then, we observe that

∞∑
n=1

x

(1 + x)n
= x

∞∑
n=1

1

(1 + x)n
=

x

1 + x
· 1

1− 1
1+x

= 1

So, in particular,
∞∑
n=1

un(x) is convergent for x ∈ [1, 2].

(b) Let E = [1, 2], is compact and un(x)→ 0 pointwise. Clearly

un+1 − un =
x

(1 + x)n+1
− x

(1 + x)n
= − x2

(1 + x)n+1
< 0

so that the sequence is monotonic. All the hypotheses of Dini’s Theorem 5 are satisfied and thus
convergence is uniform.

(c) Since the convergence is uniform we can interchange the integral and summation. Thus the
equality holds.

Two Important Theorems regarding the Test of Uniform Convergence

THEOREM 6 (Abel’s test). If

(i) bn(x) is positive monotone decreasing function of n for each fixed value x in [a, b]

(ii)
∣∣bn(x)

∣∣ < k, ∀x ∈ [a, b]

(iii) The series Σun(x) is uniformly convergent on [a, b] then Σbn(x)un(x) converges uniformly
on [a, b]

THEOREM 7 (Dirichlet’s test). The series Σun(x)vn(x) will be uniformly convergent on a set
E ⊂ R if

(i) 〈vn〉nis positive,a monotone decreasing sequence for every x ∈ E and converges uniformly
to zero on E

(ii)
∣∣Sn(x)

∣∣ =
∣∣ n∑
r=1

un(x)
∣∣ < K for every x ∈ E and for ∀n ∈ N, where K is a constant.

Consider the following examples:

(i) Consider the series of functions
∞∑
n=1

sinnx

n
defied on [a, b], where 0 < a ≤ x ≤ b < 2π.

Let un(x) = sinnx and vn(x) = 1
n . Therefore

Sn(x) =

n∑
r=1

ur(x) =
sin nx

2

sin x
2

sin
(
x+

n− 1

2
x
)

∴ |Sn(x)| = |
n∑
r=1

ur(x)| ≤
∣∣∣ 1

sin x
2

∣∣∣ =
1

sin x
2

; 0 <
x

2
< π

Now,
1

sin x
2

= cosec
x

2
is bounded for all x ∈ [a, b], where 0 < a ≤ x ≤ b < 2π.

Also, 〈vn〉nis positive,a monotone decreasing sequence for every x ∈ [a, b] and converges
uniformly to zero for all x ∈ [a, b].

Hence by Dirichlet’s test the series converges uniformly on [a, b].
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4 Uniform Convergence and Limit Theorems

As was pointed out in the previous section, even if all functions in a sequence have a nice property
(such as continuity, differentiability, etc.), the (pointwise) limit function, if it exists, need not (in
general) share this property. Our goal now is to show that, if the convergence is uniform, then
many nice properties satisfied by all the functions in the sequence will also be satisfied by their
(uniform) limit.

4.1 Uniform Convergence and Limit

In general, limits do not commute. Since the integral is defined with a limit, and since we saw in
the last section that integrals do not always respect limits of functions, we know some concrete
instances of noncommutation of limits. The fact that continuity is defined with a limit, and that
the limit of continuous functions need not be continuous, gives even more examples of situations
in which limits do not commute.

THEOREM 8. Let E0 ⊂ E ⊂ R and let 〈fn〉 ∈ F(E;R)N. Suppose, 〈fn〉 converges uniformly on
E0 to a function f ∈ F(E0;R). Let x0 ∈ E0 and suppose that lim

x−→x0
fn(x) = an ; (n = 1, 2, · · · )

then

(i) {an} of real constants converges.

(ii) lim
x−→x0

f(x) = lim
n−→∞

an i.e. lim
x−→x0

{ lim
n−→∞

fn(x)} = lim
n−→∞

{ lim
x−→x0

fn(x)}

Proof: (i) Let ε > 0 be given. Since 〈fn〉 converges uniformly onE0 to a function f ∈ F(E0;R),
∃ a positive number N(ε) ∈ N such that for all∣∣∣fm(x)− fn(x)

∣∣∣ < ε; whenever m,n ≥ N and ∀x ∈ E0

Keeping m,n fixed and let x −→ x0 we get,

|am − an| < ε ;n ≥ N.

Hence, by Cauchy’s general principle of convergence of real sequence of constants 〈an〉 converges,
say to A, i.e., lim

n−→∞
an = A. Therefore, 〈an〉 of real constants converges.

(ii) Let ε > 0 be chosen arbitrary. Since 〈an〉 converges to A ∃ a positive number N = N(ε) ∈
N such that

|an −A| <
ε

3
; ∀n ≥ N

Since, 〈fn〉 converges uniformly on E0 to a function f ∈ F(E0;R), ∃ a positive number N =

N(ε) ∈ N such that

|fn(x)− f(x)| < ε

3
; ∀n ≥ N and ∀x ∈ E0

Again since lim
x−→x0

fn(x) = an for all n, so corresponding to ε > 0, ∃δ > 0 such that

|fn(x)− an| <
ε

3
; whenever 0 < |x− x0| < δ and ∀n ∈ N
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Hence for all n ≥ N we have,

|f(x)−A| ≤ |f(x)− fn(x)|+ |fn(x)− an|+ |an −A|
<
ε

3
+
ε

3
+
ε

3
= ε; whenever 0 < |x− x0| < δ

∴ lim
x−→x0

f(x) = A = lim
n−→∞

an.

This proves the theorem. 2

THEOREM 9. Let E0 ⊂ E ⊂ R and let 〈un〉 ∈ F(E;R)N. Suppose, the series
∞∑
n=1

un(x)

converges uniformly on E0 to a sum function s ∈ F(E0;R). Let x0 ∈ E0 and suppose that
lim

x−→x0
un(x) = an ; (n = 1, 2, · · · ) then

(i)
∞∑
n=1

an converges and

(ii) lim
x−→x0

s(x) =

∞∑
n=1

an i.e. lim
x−→x0

[ ∞∑
n=1

un(x)
]

=

∞∑
n=1

[
lim

x−→x0
un(x)

]

Proof: (i) Since the series
∞∑
n=1

un(x) converges uniformly on E0 corresponding to any ε > 0, ∃ a

positive integer m such that ∀ x ∈ [a, b] and for any integer p ≥ 1,

∣∣∣ n+p∑
r=n+1

ur(x)
∣∣∣ < ε ; ∀ n ≥ m , p ≥ 1

Keeping n, p fixed, we let x −→ x0 and obtain

∣∣∣ n+p∑
r=n+1

ar

∣∣∣ < ε ; ∀ n ≥ m , p ≥ 1

Hence it follows that the series
∞∑
n=1

an converges to a finite limit A (say).

(ii) Since
∞∑
n=1

un(x) converges uniformly to s(x) so corresponding to any ε > 0, ∃ a positive

integer m such that ∀ x ∈ [a, b] and for any integer N1 ∈ N, such that ∀ x ∈ [a, b],∣∣∣ n∑
r=1

ur(x)− s(x)
∣∣∣ < ε

3
; ∀ n ≥ N1

Similarly, ∃ a positive integer N2 ∈ N such that∣∣∣ n∑
r=1

ar −A
∣∣∣ < ε

3
; ∀ n ≥ N2
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Again, since lim
x−→x0

un(x) = an ; (n = 1, 2, 3, · · · ), ∃ a suitable δ such that∣∣∣un(x)− an
∣∣∣ < ε

3n
; ∀ x ∈ |x− x0| < δ

∴
∣∣∣ n∑
r=1

ur(x)−
n∑
r=1

ar

∣∣∣ ≤ n∑
r=1

∣∣∣ur(x)− ar
∣∣∣

<
ε

3n
· n =

ε

3
; ∀ x ∈ |x− x0| < δ

Let N = maxN1, N2 ∈ N we get for n ≥ N and for x ∈ |x− x0| < δ, we have∣∣∣s(x)−A
∣∣∣ =

∣∣∣s(x)−
n∑
r=1

ur(x) +
n∑
r=1

ur(x)−
n∑
r=1

ar +
n∑
r=1

ar −A
∣∣∣

≤
∣∣∣s(x)−

n∑
r=1

ur(x)
∣∣∣+
∣∣∣ n∑
r=1

ur(x)−
n∑
r=1

ar

∣∣∣+
∣∣∣ n∑
r=1

ar −A
∣∣∣

<
ε

3
+
ε

3
+
ε

3
= ε

Therefore,

lim
x−→x0

f(x) = A =

∞∑
n=1

an i.e. lim
x−→x0

∞∑
n=1

un(x) =

∞∑
n=1

{
lim

x−→x0
un(x)

}
This proves the theorem. 2

EXAMPLE 43. For n ≥ 1, define fn : [0, π2 ]→ R by fn(x) =
4 cosn x

3 + cosn x
;x ∈ [0,

π

2
]. Then each

fn is continuous. For x ∈ (0, π2 ], cosn x → 0 as n → ∞, and so the sequence 〈fn〉 converges

pointwise on [0, π2 ] to f(x) =

{
1; for x = 0

0; for x ∈ (0, π2 ]
, which is not continuous on [0, π2 ]. Since the

limit function is not continuous, the sequence 〈fn〉 cannot converge uniformly to f(x) on [0, π2 ].

EXAMPLE 44. Evaluate lim
x→0

∞∑
n=1

cosnx

n(n+ 1)

Solution: The given series is of the form
∞∑
n=1

un(x), where un(x) =
cosnx

n(n+ 1)
. Now, for all

n ∈ N ∣∣∣un(x)
∣∣∣ =

∣∣∣ cosnx

n(n+ 1)

∣∣∣ ≤ 1

n(n+ 1)
<

1

n2
; ∀x ∈ R

Now,
∑

Mn =
∑ 1

n2
is a hyperhermonic series with p = 2 > 1, so convergent. Therefore, by

Weierstrass Mn test, the given series of functions is uniformly convergent on (−∞,∞). Thus

lim
x→0

∞∑
n=1

cosnx

n(n+ 1)
=

∞∑
n=1

{
lim
x→0

cosnx

n(n+ 1)

}
=

∞∑
n=1

1

n(n+ 1)
=

∞∑
n=1

[ 1

n
− 1

n+ 1

]
=

(
1− 1

2

)
+
(1

2
− 1

3

)
+ · · ·+

( 1

n
− 1

n+ 1

)
+ · · ·

= lim
n→∞

(
1− 1

n+ 1

)
= 1.
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THEOREM 10. Let a function fn : E ⊆ R → R be bounded on E0 ⊆ E for all n ∈ N. If the
sequence 〈fn(x)〉 of functions converges uniformly on E0, then the limit function f is bounded on
E0 and the sequence 〈fn(x)〉 is uniformly bounded on E0.

Proof: Since 〈fn(x)〉 converges uniformly on E0 to the limit function f , then for a preassigned
ε > 0, there exists a natural number N(ε) ∈ N such that

|fn(x)− f(x)| < ε, for all n ≥ N and ∀x ∈ E0

Therefore, |fM (x) − f(x)| < ε. Since fM (x) is bounded on E0, there exists a positive constant
M such that |fN (x)| ≤ K. Thus, we have

|f(x)| = |fN (x)− {fN (x)− f(x)}|
≤ |fN (x)|+ |fN (x)− f(x)| < M + ε; for all x ∈ E0

This proves that f is bounded on E0. Now, for every x ∈ E0 and each n ≥ n0

|fn(x)| = |fn(x)− f(x) + f(x)|
≤ |fn(x)− f(x)|+ |f(x)| < M + 2ε

Again, fn being bounded on E0 for each n ∈ N, we have |fn(x)| ≤ Mn for every x ∈ E0 and
n = 1, 2, · · · , (n0 − 1). Thus, if M0 = min{M1,M2, · · · ,Mn0−1,M + 2ε}, then |fn(x)| ≤M0

for every x ∈ E0 and for all n ∈ N. Therefore, the sequence 〈fn(x)〉 is uniformly bounded on E0.
2

4.2 Uniform Convergence and Continuity

THEOREM 11. Let E0 ⊂ E ⊂ R and let 〈fn〉 ∈ F(E;R)N. If each fn is continuous at some x0 ∈
E0 and 〈fn〉 converges uniformly on E0 to a function f ∈ F(E0;R); then f is also continuous at
x0. Thus, if each fn is continuous on E0, then so is the limit function f .

Proof: Let ε > 0 be chosen arbitrary. Since f is the uniform limit of 〈fn〉, we can find N =

N(ε) ∈ N such that∣∣∣fn(x)− f(x)
∣∣∣ < ε

3
; ∀ n ≥ N, ∀ x ∈ E0 (i)

With N as in (i), the continuity of fN at x0 implies that we can find δ = δ(ε) > 0 with

|fN (x)− fN (x0)| <
ε

3
; ∀ x ∈ E0 ∩ (x0 − δ, x0 + δ) (ii)

Also, (i) implies that∣∣∣fN (x)− f(x)
∣∣∣ < ε

3
; ∀ x ∈ E0 ∩ (x0 − δ, x0 + δ) (iii)

Now (i), (ii) and (iii) imply that, for each x ∈ E0 ∩ (x0 − δ, x0 + δ), we have

|f(x)− f(x0)| = |f(x)− fN (x) + fN (x)− fN (x0) + fN (x0)− f(x0)|
≤ |f(x)− fN (x)|+ |fN (x)− fN (x0)|+ |fN (x0)− f(x0)|
<
ε

3
+
ε

3
+
ε

3
= ε

and hence f is continuous at x0. Since x0 is taken arbitrary on E0, so the result holds. 2
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THEOREM 12. Let E0 ⊂ E ⊂ R and let 〈un〉 ∈ F(E;R)N. If each fn is continuous at some

x0 ∈ E0 and the series
∞∑
n=1

fn converges uniformly on E0 to a sum function s ∈ F(E0;R); then s

is also continuous at x0. In particular, if each fn is continuous on E0, then so is the limit function
s.

Proof: Let ε > 0 be chosen arbitrary. x0 be arbitrary point on E0. Since
∑
un(x) converges

uniformly to s(x) on E0, therefore for ε > 0 we can chose N ∈ N such that ∀ x ∈ E0∣∣∣ n∑
r=1

ur(x)− s(x)
∣∣∣ < ε

3
; ∀ n ≥ N

and is particular, at x = x0 ∈ E0 and n = N ,

∣∣∣ N∑
r=1

ur(x0)− s(x0)
∣∣∣ < ε

3

Again, since each un(x) is continuous at x0, the sum of a finite number of functions
n∑
r=1

ur(x) is

also continuous at x = x0. Therefore, for ε > 0, ∃δ > 0 such that

∣∣∣ N∑
r=1

ur(x)−
N∑
r=1

ur(x0)
∣∣∣ < ε

3
; ∀ x ∈ E0 ∩ (x0 − δ, x0 + δ)

Hence for ∀ x ∈ E0 ∩ (x0 − δ, x0 + δ), we have

∣∣∣s(x)− s(x0)
∣∣∣ =

∣∣∣s(x)−
N∑
r=1

ur(x) +
N∑
r=1

ur(x)−
N∑
r=1

ur(x0) +
N∑
r=1

ur(x0)− u(x0)
∣∣∣

≤
∣∣∣s(x)−

N∑
r=1

ur(x)
∣∣∣+
∣∣∣ N∑
r=1

ur(x)−
N∑
r=1

ur(x0)
∣∣∣+
∣∣∣ N∑
r=1

ur(x0)− u(x0)
∣∣∣

<
ε

3
+
ε

3
+
ε

3
= ε

∴ s(x) −→ s(x0) as x −→ x0. Since x0 is arbitrary, so s(x) is continuous in E0. 2

RESULT 3. The converse of this theorem is not always true as may be seen in the following
example

(i) The series
∞∑
n=1

x

(nx+ 1){(n− 1)x+ 1}
is uniformly convergent on any finite interval [a, b],

when 0 < a < b. But the series is only point wise convergent but not uniformly convergent
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on [a, b]. Here un(x) =
x

(nx+ 1){(n− 1)x+ 1}
=

1

(n− 1)x+ 1
− 1

nx+ 1
. Therefore

sn(x) = u1(x) + u2(x) + u3(x) + · · ·+ un(x)

=
(

1− 1

x+ 1

)
+
( 1

x+ 1
− 1

2x+ 1

)
+
( 1

2x+ 1
− 1

3x+ 1

)
+

· · ·+
[ 1

(n− 1)x+ 1
− 1

nx+ 1

]
= 1− 1

nx+ 1

∴ s(x) = lim
n−→∞

sn(x) =

{
1 x 6= 0

0 x = 0

∴ The sum function s(x) is discontinuous on [a, b], and therefore the converges is uniform
on [a, b], it is only point wise. When x 6= 0, let ε > 0 be given

|sn(x)− s(x)| =
∣∣∣1− 1

nx+ 1
− 1
∣∣∣

=
∣∣∣ 1

nx+ 1

∣∣∣ < ε ; whenever n >
1

x

(1

ε
− 1
)

But
1

x

(1

ε
− 1
)

decreases with x. Hence if we take N =
[

max
x∈[a,b]

{1

x

(1

ε
− 1
)}]

+ 1 ∈ N,

which is independent of x, then we obtain |sn(x) − s(x)| < ε, whenever n > N for all
x ∈ [a, b] i.e. the series converges uniformly to s(x) = 1 on [a, b].

Below are some examples:

(i) Consider the series
∞∑
n=0

x4

(1 + x4)n
= x4 +

x4

1 + x4
+

x4

(1 + x4)2
+

x4

(1 + x4)3
+ · · · on [0, 1].

Let {sn(x)}n be the sequence of nth partial sums. Then

sn(x) = x4
{

1 +
1

1 + x4
+

1

(1 + x4)2
+ · · ·

}
= x4

1− 1
(1+x4)n

1− 1
1+x4

= (1 + x4)
{

1− 1

(1 + x4)n

}
, x 6= 0.

Therefore lim
n→∞

sn(x) = 1 + x4 i.e., s(x) = 1 + x4, x 6= 0. Again, at x = 0, sn(0) = 0.

s(0) = lim
n→∞

sn(0) = 0. So

s(x) =

{
0; x = 0

1 + x4; x 6= 0

lim
n→∞

s(x) = 1 6= s(0) ⇒ s is not continuous at x = 0 i.e., on [0, 1], and therefore

the converges is not uniform on [0, 1], it is only point wise. Given series is a series of
continuous functions on [0, 1] but its sum function s is not so. Hence, the series does not
converge uniformly on [0, 1].
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(ii) Consider the series
∞∑
n=0

x4

(1 + x4)n
on [0, 1]. Here,

s(x) =

{
1; x 6= 1

0; x = 0

Thus the sum function s(x) is discontinuous on [0, 1], and therefore the converges is not
uniform on [0, 1], it is only point wise.

EXAMPLE 45. A function S defined by S(x) =

∞∑
n=1

cosnx

5n
;x ∈ R. Show that S is continuous

for any x ∈ R.

Solution: The given series is of the form
∑
un(x), where, un(x) = cosnx

5n . Now

|un(x)| =
∣∣∣cosnx

5n

∣∣∣ ≤ 1

5n
= Mn, say∑

Mn = 1 +
1

5
+

1

52
+ · · · = 1

1− 1
5

=
5

4

So the series
∑
Mn is convergent. Hence, by Weierstrass M -test the series

∞∑
n=1

cosnx

5n
is uni-

formly convergent on R. Again
cosnx

5n
is continuous for all x ∈ R and ∀n ∈ N. So that the sum

function S(x) is continuous on R.

4.3 Uniform Convergence and Integration

We shall investigate when do we have lim
n−→∞

∫ b

a
fn(x)dx =

∫ b

a

{
lim

n−→∞
fn(x)

}
dx =

∫ b

a
s(x)dx.

Consider the sequence 〈fn(x)〉 given by, fn(x) = 2nxe−nx
2
.Each fn(x) is continuous on [0, 1]

and hence integrable there. Now,

f(x) = lim
n−→∞

fn(x) = lim
n−→∞

2nx

enx2
= 0 ; ∀ x ∈ [0, 1]

But ∫ 1

0
fn(x)dx = −

∫ 1

0
e−nx

2
(−2nx)dx

= −
∫ 1

0
e−nx

2
d(−nx2) = −

[
e−nx

2
]1
0

= 1− e−n

∴ lim
n−→∞

∫ 1

0
fn(x)dx = lim

n−→∞
(1− e−n) = 1

Also, ∫ 1

0

{
lim

n−→∞
fn(x)

}
dx =

∫ 1

0
0 · dx = 0

∴ lim
n−→∞

∫ 1

0
fn(x)dx 6=

∫ 1

0

{
lim

n−→∞
fn(x)

}
dx.

We show that Riemann integrability is preserved when we pass to uniform limits.
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RESULT 4. [Lebesgue’s Integrability Criterion:] Let f : [a, b] → R be a bounded function. Then
f is Riemann integrable if and only if it is continuous almost everywhere.

Proof: For each N ∈ N, let Dn = {x ∈ [a, b] : ωf (x) ≥ 1
N } and put D =

∞⋃
n=1

Dn. Then D

is the set of all discontinuity points of f in [a, b](?). Suppose that f ∈ R[a, b]. We want to prove
that each Dn has measure zero. By Riemann’s Lemma, given any ε > 0 we can find a partition
P =

(
xk

)n
k=0

of [a, b] such that U(P ; f) − L(P ; f) < ε
N . Let us divide {1, 2, · · · , n} into two

parts, Gi = Gi(DN ); i = 1, 2

G1 = {j : (xj−1, xj) ∩DN 6= φ}; G2 = {j : (xj−1, xj) ∩DN = φ}

Now, with Mr = sup{f(x) : x ∈ [xr−1, xr]}, mj = inf{f(x) : x ∈ [xr−1, xr]} and δr =

xr − xr−1, we have

U(P ; f)− L(P ; f) =
∑
r∈G1

(Mr −mr)δr +
∑
r∈G2

(Mr −mr)δr <
ε

N

Since (xr−1, xr) ∩DN 6= φ, implies that Mr −mr ≥
ε

N
, we have

∑
r∈G1

δr ≤ N
∑
r∈G1

(Mr −mr)δr <
Nε

N
= ε

But the intervals (xr−1, xr) with r ∈ G1 cover DN . Therefore, DN has measure zero for each N ;
and hence, D has measure zero.

Conversely, let us assume that D has measure zero and let ε > 0 be given. Each [a, b]/DN

is (relatively) open. Therefore each DN is a closed (hence compact) subset of [a, b] and has

measure zero. Let N be such that (b − a)/ = N < ε/2 and pick a partition P =
(
xk

)n
k=0

of [a, b] such that
∑
r∈G1

δr <
ε

4M
, where, M = sup{|f(x)| : x ∈ [a, b]}. Next, note that if

K =
⋃
r∈G2

[xr−1, xr], with G2 defined as above, then K is a compact subset of [a, b] such that
x ∈ K implies ωf (x) < 1

N . Thus, we can pick a δ > 0, such that

|s− t| < δ ⇒ |f(s)− f(t)| < 1

N
.

Let Q =
(
x′k′
)n′
k′=0

be a refinement of P with mesh ν(P ) < δ. Then, with Mr′ ,mr′ and δ′r′ ,

defined as usual and the subsets G′1, G
′
2 ⊂ {1, 2, · · ·n′} defined as in the first part of the proof, we

have

U(Q; f)− L(Q; f) =
∑
r′∈G′1

(M ′r −m′r)δ′r +
∑
r′∈G′2

(M ′r −m′r)δ′r

< 2M
∑
r∈G1

δr +
b− a
N

< 2M · ε

4M
+
ε

2
= ε

which shows indeed that f ∈ R ∈ [a, b] and completes the proof. 2
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THEOREM 13 (Uniform Convergence and Integrability). Let 〈fn〉 be a sequence of Riemann in-
tegrable functions on a compact interval [a, b] ⊂ R. If lim fn = f , uniformly on [a, b], then f is
also Riemann integrable on [a, b] and we have∫ x

a
f(t) dt = lim

n→∞

∫ x

a
fn(t) dt; ∀x ∈ [a, b]

Proof: Let ε > 0 be chosen arbitrary. The uniform convergence of 〈fn〉 to f implies that, for
some n ∈ N such that

|fn(x)− f(x)| < ε; ∀x ∈ [a, b] and n ≥ N

In particular, |fN (x)− f(x)| < ε, for all x ∈ [a, b]. Therefore,

|f(x)| = |f(x)− fN (x) + fN (x)| ≤ |f(x)− fN (x)|+ |fN (x)|
< ε+ |fN (x)|; ∀x ∈ [a, b]

Now, for each n ∈ N, fn is Riemann integrable and hence continuous on [a, b] except on a set Dn

of measure zero. Let D =
∞⋃
n=1

Dn. Then D has measure zero. For each x ∈ [a, b]/D, all the fn

are continuous at x. Since fn converges to f uniformly, Theorem implies that f is also continuous
at x. Thus, f is indeed continuous on [a, b]/D and hence Riemann integrable.

Next, given any ε > 0, by uniform convergence, we can find N ∈ N such that |fN (t)− f(t)| <
ε
b−a , for all [a, b].∣∣∣ ∫ x

a
f(t) dt−

∫ x

a
fN (t) dt

∣∣∣ ≤ ∫ b

a
|f(t)− fN (t)| dt < ε

and the proof is complete. 2

THEOREM 14. Let 〈fn(x)〉 be a sequence of R-integrable functions on [a, b] where a, b are finite.
If 〈fn(x)〉 converges uniformly to f(x) which is R-integrable in [a, b], then

lim
n−→∞

∫ b

a
fn(x)dx =

∫ b

a

{
lim

n−→∞
fn(x)

}
dx =

∫ b

a
f(x)dx

Proof: Let ε > 0 be any given positive number. Then by definition of U.C of the {sn(x)} on
[a, b] We can find a positive integer N(ε) for which

∣∣∣sn(x) − s(x)
∣∣∣ < ε

b−a ; ∀ n > N and for all
x ∈ [a, b].
We chose n > N , we have∣∣∣ ∫ b

a
sn(x)dx−

∫ b

a
s(x)dx

∣∣∣ =
∣∣∣ ∫ b

a
{sn(x)− s(x)}

∣∣∣
≤

∫ b

a

∣∣∣sn(x)− s(x)
∣∣∣dx

≤
∫ b

a

ε

b− a
dx = ε

∴ lim
n−→∞

∫ b
a sn(x)dx =

∫ b
a

{
lim

n−→∞
sn(x)

}
dx =

∫ b
a s(x)dx. Hence the theorem.
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THEOREM 15 (Term by Term Integration of an Uniform Convergent Series). Let 〈un(x)〉 be a

sequence of R-integrable functions on a compact interval [a, b] ⊂ R. If the infinite series
∞∑
n=1

un

converges uniformly to sum s(x) on [a, b], then

(i) s ∈ R[a, b], i.e., s is R-integrable on [a, b], and

(ii)
∫ b

a
s(x)dx =

∫ b

a

[ ∞∑
n=1

un(x)
]
dx =

∞∑
n=1

[ ∫ b

a
un(x)dx

]
Proof: Here sn(x) = u1(x) +u2(x) + · · ·+un(x) = the nth partial sum of the series. Let ε > 0

be any given positive number. Then by definition of uniformly convergent of the 〈sn(x)〉 on [a, b]

We can find a positive integer m such that∣∣∣sn(x)− s(x)
∣∣∣ < ε

3(b− a)
; ∀ n ≥ m.

In particular,
∣∣∣sm(x)−s(x)

∣∣∣ < ε

3(b− a)
i.e. − ε

3(b−a) +sm(x) < s(x) < ε
3(b−a) +sm(x). For this

fixed m, since sm is R-integrable, we chose a partition of [a, b] such that U(P ; sm)−L(P ; sm) <
ε
3 .

∵ s(x) < sm(x) +
ε

3(b− a)

∴ U(P ; s) < U(P ; sm) +
ε

3

Again since,

s(x) > sm(x)− ε

3(b− a)

∴ L(P ; s) > L(P ; sm)− ε

3

Therefore

U(P ; s)− L(P ; s) < U(P ; sm)− L(P ; sm) +
2ε

3
=
ε

3
+

2ε

3
= ε

So, s(x) is R-integrable on [a, b]. Therefore,

lim
n−→∞

∫ b

a
sn(x)dx =

∫ b

a

{
lim

n−→∞
sn(x)

}
dx

∞∑
n=1

[ ∫ b

a
un(x)dx

]
=

∫ b

a

[ ∞∑
n=1

un(x)
]
dx

RESULT 5. It is observed here that term-by=term integration is not a sufficient condition for uni-
form convergence of a series of functions as may be seen in the following example 46.

EXAMPLE 46. Show that the series
∞∑
n=1

un(x), where u1(x) = x and un(x) =
[
x

1

2n− 1 −

x

1

2n− 3
]
, n ≥ 2, is not uniformly convergent on [0, 1]. the series be integrated term-by-term on

[0, 1] ?
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Solution: The nth partial sum of the series is given by

Sn(x) = u1(x) + u2(x) + · · ·+ un(x) = x
1

2n−1 ;x ∈ [0, 1]

For all x ∈ (0, 1], lim
n→∞

Sn(x) = 1 and for x = 0, the sequence 〈Sn〉 converges to 0. Therefore,

the series
∞∑
n=1

un(x) is convergent pointwise on [0, 1] to the limit function S, where S(x) ={
0; if x = 0

1; if x ∈ (0, 1]
. The limit function S(x) is discontinuous at x = 0. Since each un is

continuous on [0, 1] and the limit function S(x) is not continuous on [0, 1], so the series
∑
un is

not uniformly convergent on [0, 1]. Now∫ 1

0

( ∞∑
n=1

un(x)
)
dx =

∫ 1

0
S(x)dx =

∫ 1

0
dx = 1∫ 1

0
u1(x)dx =

∫ 1

0
x dx =

1

2∫ 1

0
un(x)dx =

∫ 1

0
dx =

[
x

1

2n− 1 − x
1

2n− 3
]

=
2n− 1

2n
− 2n− 3

2n− 2
;n ≥ 2 (i)

Again, let In =

∫ 1

0
u1(x)dx+

∫ 1

0
u2(x)dx+ · · ·+

∫ 1

0
un(x)dx, then using (i), we get

In =
2n− 1

2n
⇒ lim

n→∞
In = 1

⇒
∞∑
n=1

∫ 1

0
un(x)dx = 1 =

∫ 1

0

( ∞∑
n=1

un(x)
)
dx

i.e., the series can be integrated term-by-term on [0, 1].

EXAMPLE 47. Prove that
∫ 1

0

( ∞∑
n=1

xn

n2

)
dx =

∞∑
n=1

1

n2(n+ 1)

Solution: Let un(x) = xn

n2 ; x ∈ [0, 1], n ∈ N. For all x ∈ [0, 1],

|un(x)| =
∣∣∣xn
n2

∣∣∣ ≤ 1

n2
; ∀n ∈ N.

Let Mn =
1

n2
, then |un(x)| ≤ Mn for all x ∈ [0, 1] and for all n ∈ N and

∑
Mn is a convergent

series of positive real numbers.
Therefore, by WeierstrassM -test, the series

∑
un is uniformly convergent on [0, 1]. Since each

fn is integrable on [0, 1], the series can be integrated term by term on [0, 1]. Hence∫ 1

0

( ∞∑
n=1

xn

n2

)
dx =

∞∑
n=1

∫ 1

0

xn

n2
dx =

∞∑
n=1

[ xn+1

(n+ 1)n2

]1
0

=
∞∑
n=1

1

n2(n+ 1)
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EXAMPLE 48. Show that the series
∞∑
n=1

un(x), where un(x) = 2x
[ 1

n2
e
−
x2

n2− 1

(n+ 1)2
e
−

x2

(n+ 1)2
]
,

x ∈ [0, 1] is uniformly convergent on [0, 1] and further show that
∞∑
n=1

∫ 1

0
un(x)dx =

∫ 1

0

( ∞∑
n=1

un(x)
)
dx.

Solution: The nth partial sum of the series is given by

Sn(x) = u1(x) + u2(x) + · · ·+ un(x)

= 2x
[
e−x

2
− 1

(n+ 1)2
e
−

x2

(n+ 1)2
]

For all x ∈ (0, 1], lim
n→∞

Sn(x) = 2xe−x
2
. For x = 0, the sequence 〈Sn〉 converges to 0. Therefore,

the series
∞∑
n=1

un(x) converges pointwise on [0, 1] to the function S, where S(x) = 2xe−x
2
,

x ∈ [0, 1]. Therefore, ∫ 1

0

( ∞∑
n=1

un(x)
)
dx =

∫ 1

0
2xe−x

2
dx = 1− 1

e

For all x ∈ [0, 1],

|un(x)| ≤ 2
{ 1

n2
+

1

(n+ 1)2

}
= Mn (say ); ∀n ∈ N

Then
∞∑
n=1

Mn is a convergent series of positive real numbers and for all x ∈ [0, 1], |un(x)| ≤ Mn

for all n ∈ N. Hence by Weierstrass M -test the series
∞∑
n=1

un(x) converges uniformly on [0, 1].

Now∫ 1

0
un(x)dx =

∫ 1

0
2x
[ 1

n2
e
−
x2

n2 − 1

(n+ 1)2
e
−

x2

(n+ 1)2
]
dx

=
[
− e
−
x2

n2 + e
−

x2

(n+ 1)2
]1
0

= −e
−

1

n2 + e
−

1

(n+ 1)2 (i)

Since each un is integrable on [0, 1] and
∑
un converges uniformly on [0, 1], then term-by-term

integration for the series is possible and
∞∑
n=1

∫ 1

0
un(x)dx =

∫ 1

0

( ∞∑
n=1

un(x)
)
dx = 1− 1

e

Again, let In =

∫ 1

0
u1(x)dx+

∫ 1

0
u2(x)dx+ · · ·+

∫ 1

0
un(x)dx, then using (i), we get

In = −1

e
+ e
−

1

(n+ 1)2 ⇒ lim
n→∞

In = 1− 1

e

⇒
∞∑
n=1

∫ 1

0
un(x)dx = 1− 1

e
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EXAMPLE 49. Let us consider the series
∞∑
n=1

un(x), where un(x) = x
[
n2e−n

2x2−(n−1)2e−(n−1)
2x2
]
,

x ∈ [0, 1]. Applying integration show that the series
∞∑
n=1

un(x) is not uniformly convergent on

[0, 1].

Solution: The nth partial sum of the series is given by

Sn(x) = u1(x) + u2(x) + · · ·+ un(x) = n2xe−n
2x2

For all x ∈ (0, 1],

en
2x2 >

n4x4

2
> 0⇒ 0 < Sn(x) <

2

n3x3
; ∀x ∈ (0, 1].

Thus, by Sandwich theorem lim
n→∞

Sn(x) = 0 for all x ∈ (0, 1]. For x = 0, the sequence 〈Sn〉

converges to 0. Therefore, the series
∞∑
n=1

un(x) converges pointwise on [0, 1] to the function S,

where S(x) = 0, x ∈ [0, 1]. Therefore,∫ 1

0

( ∞∑
n=1

un(x)
)
dx =

∫ 1

0
0 dx = 0

Now∫ 1

0
un(x)dx =

∫ 1

0
x
[
n2e−n

2x2 − (n− 1)2e−(n−1)
2x2
]
dx

=
1

2

[
e−(n−1)

2x2 − en2x2
]

=
1

2

[
e−(n−1)

2 − en2
]

(i)

Again, let In =

∫ 1

0
u1(x)dx+

∫ 1

0
u2(x)dx+ · · ·+

∫ 1

0
un(x)dx, then using (i), we get

In =
1

2

(
1− e−n2

)
⇒ lim

n→∞
In =

1

2

⇒
∞∑
n=1

∫ 1

0
un(x)dx =

1

2
6=
∫ 1

0

∞∑
n=1

un(x)dx

Therefore, the series
∞∑
n=1

un(x) is not uniformly convergent on [0, 1].

EXAMPLE 50. If S(x) be the sum function of the series
∞∑
n=1

un(x), where un(x) = ne−nx, x ∈

[a, b], 0 < a < b, then show that the series converges uniformly to S(x) on [a, b]. Evaluate∫ log 3

log 2
S(x)dx.
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Solution: For all x ∈ [a, b]

|un(x)| = n

enx
<

2n

n2x2
<

2

n2a2
; ∀n ∈ N

Let Mn = 2/a2n2, then
∑
un(x) converges uniformly on [a, b] where 0 < a < b to the sum

function S(x), where

S(x) =

∞∑
n=1

un(x); x ∈ [a, b], 0 < a < b.

Now, each un is integrable on [a, b]. Also, the series
∑
un is uniformly convergent on [a, b] to the

sum function S(x). Therefore∫ b

a
S(x)dx =

∞∑
n=1

∫ b

a
un(x)dx =

∫ b

a
u1(x)dx+

∫ b

a
u2(x)dx+ · · ·

∫ log 3

log 2
S(x)dx =

∫ log 3

log 2
e−xdx+

∫ log 3

log 2
2e−2xdx+

∫ log 3

log 2
3e−2xdx+ · · ·

=
(1

2
− 1

3

)
+
( 1

22
− 1

32

)
+
( 1

23
− 1

33

)
+ · · ·

=
(

1 +
1

2
+

1

22
+

1

23
+ · · ·

)
−
(

1 +
1

3
+

1

32
+

1

33
+ · · ·

)
= 2− 3

2
=

1

2

4.4 Uniform Convergence and Differentiation

Here, we look at the differentiability properties of the limit of a uniformly convergent sequence of
differentiable functions. Here, the situation is more complicated. In fact, even the uniform limit
of a sequence of differentiable functions need not be differentiable.

Consider the sequence 〈fn(x)〉 where fn(x) = xe−nx
2

, −1 ≤ x ≤ 1. Now

f(x) = lim
n−→∞

sn(x) = x lim
n−→∞

e−nx
2

= 0.

∴ 〈fn(x)〉 converges uniformly to f(x) = 0 for all values of x in [−1, 1]. Hence f ′(x) = 0

∀ x ∈ [−1, 1], so f ′(0) = 0. But

f ′n(x) = e−nx
2

+ x(−2nx)e−nx
2

= e−nx
2
(1− 2nx2).

At x = 0 , s′n(0) = 1 ; ∀ n. Therefore, f ′n(0) −→ 1 as n −→ ∞ and f ′(0) = 0. So uniform

convergence of 〈fn(x)〉 is not enough to guarantee that
d

dx

{
lim

n−→∞
fn(x)

}
= lim

n−→∞

{ d

dx
fn(x)

}
.

THEOREM 16. Let 〈fn〉 be a real valued function defined on [a, b] such that,

(i) each fn is continuously differentiable function on [a, b]

(ii) 〈fn(x)〉 converges at least at one point x0 ∈ [a, b]

(iii) 〈f ′n〉 converges uniformly to a function σ(x) on [a, b].
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Then

1. 〈fn(x)〉 must converges uniformly to a continuously differentiable function f(x) on [a, b],
and

2. f ′(x) = σ(x) i.e.,
d

dx

{
lim

n−→∞
fn(x)

}
= lim

n−→∞

{ d

dx
fn(x)

}
; ∀x ∈ [a, b].

Proof: Let ε > 0 be chosen number. Since 〈f ′n〉 converges uniformly on [a, b], so, ∃ a positive
integer N1(ε) ∈ N such that∣∣∣f ′n(x)− f ′m(x)

∣∣∣ < ε

2(b− a)
; ∀m,n ≥ N1, ∀ x ∈ [a, b]

Also since 〈fn(x)〉 converges at x = x0 , corresponding to the same ε, ∃ a natural numberN2(ε) ∈
N such that ∣∣∣fn(x0)− fm(x0)

∣∣∣ < ε

2
; ∀m,n ≥ N2

Let x and y be any points in [a, b]. Since fn(x) is differentiable and hence continuous on [a, b], by
using Lagrange mean value theorem, we get∣∣∣{fn(x)− fm(x)} − {fn(y)− fm(y)}

∣∣∣
=
∣∣∣(x− y){f ′n(ξ)− f ′m(ξ)}

∣∣∣; where, ξ ∈ (x, y)

< (b− a) · ε

2(b− a)
<
ε

2
; as |x− y| < b− a

Let, N = max{N1, N2} ∈ N. Then, for ∀m,n ≥ N and for all x ∈ [a, b], we have

|fn(x)− fm(x0)| = |{fn(x)− fm(x)} − {fn(x0)− fm(x0)}+ {fn(x0)− fm(x0)}|

≤
∣∣∣{fn(x)− fm(x)} − {fn(x0)− fm(x0)}

∣∣∣+ |{fn(x0)− fm(x0)}|

<
ε

2
+
ε

2
= ε

Therefore, by Cauchy criterion, 〈fn〉 converges uniformly on [a, b] and f be the uniform limit of
〈fn〉 on [a, b].

For fixed x on [a, b], and for any y ∈ [a, b]; let us define

φn(y) =
fn(y)− fn(x)

y − x
;n ∈ N and φ(y) =

f(y)− f(x)

y − x
; y 6= x

Since each fn is differentiable on [a, b], so for each n ∈ N

lim
y→x

φn(y) = lim
y→x

fn(y)− fn(x)

y − x
= f ′n(x).

Now, for all m,n ≥ N , we have

|φn(y)− φm(y)| =
1

|y − x|
·
∣∣∣− {fn(x)− fm(x)}+ {fn(y)− fm(y)}

∣∣∣
<

1

y − x
· |x− y| · ε

2(b− a)
=

ε

2(b− a)
.
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Therefore, {φn(y)} converges uniformly to φ(y) on [a, b] for y ∈ [a, b] but y 6= x. Since {fn(x)}n
converges uniformly to f(x) on [a, b], we get

lim
y→x
{ lim
n→∞

φn(y)} = lim
n→∞

{ lim
y→x

φn(y)}

or, lim
y→x

φ(y) = lim
n→∞

f ′n(x)

or, lim
y→x

f(y)− f(x)

y − x
= lim

n→∞
f ′n(x)

or, f ′n(x) = σ(x);∀x ∈ [a, b]

But f ′(x) =
d

dx
{f(x)} =

d

dx

{
lim
n→∞

fn(x)
}

and σ(x) = lim
n→∞

f ′n(x) = lim
n→∞

d

dx
fn(x). So,

d

dx

{
lim
n→∞

fn(x)
}

= lim
n→∞

d

dx
fn(x); ∀x ∈ [a, b]

This completes the proof of the theorem. 2

EXAMPLE 51. Show that for the series whose partial sums are given by sn(x) = n2xe−n
2x2

(i) the limit function is continuous.

(ii) term-by-term integration is valid

(iii) term-by-term differentiation is valid but

(iv) the series does not converge uniformly on any closed interval containing origin

Solution: Let [a, b] be a closed and bounded interval containing 0. Here s(x) = lim
n→∞

sn(x) =

0∀x ∈ [a, b], a constant function. So, s is continuous on [a, b].
(ii) ∫ b

a

{
lim
n→∞

sn(x)
}
dx =

∫ b

a
0dx = 0.∫ b

a
sn(x)dx =

∫ b

a
n2xe−n2x2dx = −1

2

{
e−n

2b2 − e−n2a2
}

[ Put n2x2 = u]

∴ lim
n→∞

∫ b

a
sn(x)dx = 0

So,
∫ b

a
{
∑

fn(x)}dx =
∑∫ b

a
fn(x)dx. Thus, term-by-term integration is valid.

(iii) Since s(x) = 0;∀x ∈ [a, b]. ∴ s′(x) = 0∀x ∈ [a, b]. Now, s′n(x) = n2e−n
2x2(1 − 2n2x2).

Therefore

lim
n→∞

s′n(x) = 0; x ∈ [a, b]

lim
n→∞

s′n(x) = s′(x), i.e.,
d

dx

{
lim
n→∞

sn(x)
}

= lim
n→∞

d

dx
(sn(x))

or,
d

dx

{ ∞∑
n=0

fn(x)
}

=

∞∑
n=0

f ′n(x); ∀x ∈ [a, b]
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Thus term-by-term differentiation is valid for all x ∈ [a, b].

(iv) Mn = sup
x∈[a,b]

|sn(x)− s(x)| = sup
x∈[a,b]

∣∣∣ n2x
en2x2

∣∣∣ = |g(x)|, say. Now

g′(x) = x2e−n
2x2(1− 2n2x2) = 0 for x = ± 1

n
√

2

g′′(x) = n4x(4n2x2 − 6)en
2x2 < 0 at x =

1

n
√

2

Therefore, Mn =
1

2
ne−1/2 → ∞ as n → ∞. So the series is not uniformly convergent on [a, b],

an interval containing 0.

THEOREM 17 (Term-by-Term Differentiation). Let 〈un〉 be a sequence of differentiable functions

on [a, b], such that the series
∞∑
n=1

un(x0) converges for some x0 ∈ [a, b]. If the series
∞∑
n=1

u′n of

derivatives converges uniformly on [a, b], then the series
∞∑
n=1

un converges uniformly on [a, b] to a

differentiable sum s and we have

s′(x) =
d

dx

∞∑
n=1

un(x) =
∞∑
n=1

u′n(x); ∀x ∈ [a, b]

Proof: The nth partial sum of the series
∞∑
n=1

un is sn(x) = u1(x)+u2(x)+u3(x)+ · · ·+un(x).

Now,

(i) Each un is given to be differentiable on [a, b] and so sn is also differentiable on [a, b], and
s′n(x) = u1

′(x) + u2
′(x) + u3

′(x) + · · ·+ un
′(x).

(ii) If
∞∑
n=1

u′n be the series of derived functions then this s′n(x) =
∞∑
n=1

u′n(x)

(iii) Given that the series
∞∑
n=1

u′n(x) converges uniformly to σ(x) on [a, b], so we may take

{u′n(x)}n converges to σ(x) on [a, b].

(iv) Given that the series
∞∑
n=1

u′n(x) converges at least one point x0 ∈ [a, b], so we can take

{s′n(x)}n converges at least one point x0 ∈ [a, b].

Hence, by the previous theorem 16, the sequence {sn(x)} must converge uniformly to its limit
function s(x) on [a, b] such that s′(x) = σ(x);∀x ∈ [a, b].

EXAMPLE 52. We end this section by giving an example of a continuous function on R that is
nowhere differentiable

(i) Consider the sawtooth function:

f0(x) =


x− [x]; if x ≤ [x] +

1

2

[x] + 1− x; if x > [x] +
1

2

Dr. Prasun Kumar Nayak Home Study Materiel



41 Small Overview On Uniform Convergence

Then f0(x) is the distance from x to the nearest integer, i.e., f0(x) = d(x,Z), and is a
continuous, periodic function on R with period 1. Now, define fn(x) = 4−nf0(4

nx) for all
x ∈ R and n = 0, 1, 2, · · · . Then fn is also a continuous sawtooth function (with period
4−n), whose graph consists of line segments of slope ±1. Since 0 ≤ f0 ≤ 1

2 , we have

0 ≤ fn(x) ≤ 1

2 · 4n
for all x ∈ R and n ∈ N.

RESULT 6. Only the uniform convergence of the series of functions
∑

n un(x) on [a, b] is not
sufficient to ensure the validity of term-by-term differentiation of the series

∑
n un(x) on [a, b].

This situation is depicted in the following example 53.

EXAMPLE 53. example We consider the series
∞∑
n=1

un(x), x ∈ [0, 1] whose nth partial sum is

sn(x) =
x

1 + nx2
, x ∈ [0, 1]. Then lim

n→∞
sn(x) = 0 for all x ∈ [0, 1]. Hence, the sequence

〈sn(x)〉 converges pointwise to the limit function s(x) where s(x) = 0, x ∈ [0, 1]. Let (as
depicted in Example 20)

Mn = sup
x∈[0,1]

∣∣∣sn(x)− s(x)
∣∣∣ = sup

x∈[0,1]

x

1 + nx2
=

1

2
√
n
→ 0 as n→∞

Therefore 〈sn(x)〉 is uniformly convergent on [0, 1]. Thus, the series
∑

n un(x) converges uni-
formly to the limit function f on [0, 1]. Now

s′n(x) =
d

dx

{
sn(x)

}
=

1− nx2

(1 + nx2)2
and lim

n→∞
s′n(x) =

{
0; 0 < x ≤ 1

1; x = 0

Hence the series
∑
u′n converges to the function g, where g(x) =

{
0; 0 < x ≤ 1

1; x = 0
. Therefore

d

dx
u1(x) +

d

dx
u2(x) + · · · = 0 =

d

dx

[
u1(x) + u2(x) + · · ·

]
, for 0 < x ≤ 1

and
d

dx
u1(x) +

d

dx
u2(x) + · · · = 1 6= d

dx

[
u1(x) + u2(x) + · · ·

]
, for x = 0

RESULT 7. If the series
∑
sn be convergent pointwise, then the uniform convergence of the series∑

s′n is only a sufficient condition for the validity of term-by-term differentiation of the series∑
sn. This situation is depicted in the following example 54.

EXAMPLE 54. We consider the series
∞∑
n=1

un(x), x ∈ [0, 1] whose nth partial sum is sn(x) =

log(1 + n4x2)

2n2
, x ∈ [0, 1]. Then

lim
n→∞

sn(x) = lim
n→∞

log(1 + n4x2)

n2
= 0 for all x ∈ [0, 1]

Therefore, the sequence 〈sn(x)〉 converges pointwise to the limit function s(x) where s(x) = 0,
x ∈ [0, 1]. Now

s′n(x) = u′1(x) + u′2(x) + · · ·+ u′n(x) =
n2x

1 + n4x2
;x ∈ [0, 1]
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Therefore, lim
n→∞

s′n(x) = 0 for all x ∈ [0, 1]. Thus the sequence 〈s′n(x)〉 converges point wise to

the limit function s(x) where s(x) = 0, x ∈ [0, 1] and hence the series
∑
s′n(x) converges to the

function g(x) on [0, 1]. Now
d

dx
[f(x)] = 0 for all x ∈ [0, 1] and also

d

dx
[f(x)] = g(x), x ∈ [0, 1].

Therefore,

d

dx
[u1(x)] +

d

dx
[u2(x)] + · · · = d

dx

[
u1(x) + u2(x) + · · ·

]
Thus term-by-term differentiation of the series

∑
un is valid. Let

Mn = sup
x∈[0,1]

∣∣∣s′n(x)− s(x)
∣∣∣ = sup

x∈[0,1]

n2x

1 + n4x2

For x > 0, we have
n2x+ 1

n2x

2
≥
√
n2x · 1

n2x
, equality holds for x =

1

n2
. Therefore,

n2x

1 + n4x2
≤ 1

2
for all x > 0, equality holds for x =

1

n2
. Again for x = 0,

n2x

1 + n4x2
= 0.

Hence

Mn = sup
x∈[0,1]

n2x

1 + n4x2
=

1

2

Since lim
n→∞

Mn =
1

2
(6= 0), the sequence 〈s′n(x)〉 and hence the series

∑
u′n is not uniformly

convergent on [0, 1]. Thus, although the series
∑
u′n is not uniformly convergent on [0, 1], term

by term differentiation of the series
∑
un is valid.

EXAMPLE 55. Show that term-by-term differentiation is not valid at x = 0 for the series
∞∑
n=1

un(x)

, where un(x) =
nx

1 + n2x2
− (n− 1)x

1 + (n− 1)2x2
;x ∈ [0, 1].

Solution: Let sn(x) be the nth partial sum of the series
∑

un(x), then

sn(x) = u1(x) + u2(x) + · · ·+ un(x) =
nx

1 + n2x2
; x ∈ [0, 1]

Therefore, lim
n→∞

sn(x) = 0 for all x ∈ [0, 1] and hence the sequence 〈sn(x)〉 converges pointwise

to the limit function s(x), where s(x) = 0, x ∈ [0, 1]. Thus the series
∑

un(x) converges
pointwise to the limit function s(x) for all x ∈ [0, 1]. Now

d

dx

(∑
un(x)

)
=

d

dx

()
= 0; ∀x ∈ [0, 1]

and
d

dx

(
un(x)

)
=

n− n3x2(
1 + n2x2

)2 − (n− 1)− (n− 1)3x2[
1 + (n− 1)2x2

]2
At x = 0,

d

dx

(
un(x)

)
= n− (n− 1) = 1 and hence

∑ d

dx

(
un(x)

)
= 1 + 1 + · · · , which is a

divergent series. Therefore, at x = 0,
d

dx

(∑
un(x)

)
6=
∑ d

dx

(
un(x)

)
.
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Problem Set

[Multiple Choice Questions]
1. Let lim

n→∞
xn = f(x), x ∈ [0, 1]. Then

f(x) =

{
0; if 0 ≤ x < 1

1; if x = 1
a) f(x) =

{
1; if 0 ≤ x < 1

0; if x = 0
b)

f(x) = 1, x ∈ [0, 1]c) f(x) = 0;x ∈ [0, 1]d)

1 (a)

2. The series
∞∑
n=1

xn, converges pointwise to the sum function s(x), x ∈ [0, 1]. Then

f(x) =
1

1− x
, x ∈ [0, 1]a) f(x) =

1

1 + x
, x ∈ [0, 1]b)

f(x) = x, x ∈ [0, 1]c) f(x) = 0 does not existd)

2 (d)

3. For each n ∈ N, let fn(x) = lim
m→∞

(
cosn!πx

)2m
;x ∈ R. Then the sequence of functions

〈fn〉 converges on R to the function f defined by

f(x) =

{
0; if x ∈ Q
1; if x ∈ R−Q

a) f(x) =

{
1; if x ∈ Q
0; if x ∈ R−Q

b)

f(x) =

{
π; if x ∈ Q
1; if x ∈ R−Q

c) f(x) =

{
−π; if x ∈ Q
1; if x ∈ R−Q

d)

3 (b)

4. Which of the following sequences of functions is uniformly convergent on (0, 1)?

xna)
n

nx+ 1
b)

x

nx+ 1
c)

1

nx+ 1
d)

4 (c)

5. Let fn(x) = x1/n for x ∈ [0, 1]. Then

lim
n→∞

fn(x) exists for all x ∈ [0, 1]a) lim
n→∞

fn(x) defines a continuous func-

tion on [0, 1]

b)

{fn(x)} converges uniformly on [0, 1]c) lim
n→∞

fn(x) = 0 for all n ∈ [0, 1]d)

5 (a)

6. Let lim
n→∞

xe−nx = f(x), x ≥ 0. Then

f(x) = 0, x ≥
0

a) f(x) = 1, x ≥
0

b) f(x) = e−1, x ≥
0

c) none of the aboved)
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6 (a)

7. Let fn(x) = tan−1 nx;x ∈ R. Then lim
n→∞

fn(x) is

0a)
π

2
b) −π

2
c)

π

2
sgnxd)

7 (d)

8. For x ∈ (−1, 1), the sum of the series
1

1 + x
+

2x

1 + x2
+

4x3

1 + x4
+ · · ·+ 2nx2

n−1

1 + x2n
+ · · · is

1

1 + x
a)

1

1− x
b) 0c)

1− x
1 + x

d)

8 (b)

9. The series 1− e−2x

22 − 1
+

e−4x

42 − 1
− e−6x

62 − 1
+ · · · is

converges uniformly for all x ≥ 0a) converges uniformly for all x ∈ Rb)

converges uniformly for all x ∈ (−1, 1)c) converges uniformly on [−1, 1]d)

9 (a)

10. Which of the following sequence 〈fn〉 of functions does not converge uniformly on [0, 1]?

fn(x) =
e−x

n
a) fn(x) = (1− x)nb)

fn(x) =
x2 + nx

n
c) fn(x) =

sin(nx+ n)

n
d)

10 (b)

11. Which one of the following series of functions is uniformly convergent for all real x ?∑ (−1)nx2n√
n(1 + x2n)

a)
∑ (−1)nx2n

n3/2(1 + x2n)
b)

∑ (−1)nx2n

n2/3(1 + x2n)
c) None of thesed)

11 (b)

12. Let fn(x) =

{
1− nx; for 0 ≤ x ≤ 1

n

0; for 1
n < x ≤ 1

lim
n→∞

fn(x) defines a continuous func-

tion on [0, 1]

a) {fn} converges uniformly on [0, 1]b)

lim
n→∞

fn(x) = 0 for all x ∈ [0, 1]c) lim
n→∞

fn(x) exists for all x ∈ [0, 1]d)

12 (d)

13. Let fn(x) =

{
1− nx; for 0 ≤ x ≤ 1

n

0; for 1
n < x ≤ 1

and lim
n→∞

fn = f . Then
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f is continuous on [0, 1]a) f is bounded on [0, 1]b)

convergence of 〈fn〉 is uniformc) none of thesed)

13 (b)

14. Let fn(x) =

{
n(1− nx); for 0 ≤ x ≤ 1

n

0; for 1
n < x ≤ 1

. Then 〈fn〉

converges pointwise to f(x) = 0, x ∈
[0, 1]

a) converges uniformly to f(x) = 0, x ∈
[0, 1]

b)

lim
n→∞

∫ 1

0
fn(x)dx =

∫ 1

0
f(x)dxc) none of the aboved)

14 (a)

15. Let fn(x) =
xn

1 + xn
;x ∈ [0, 3]. Then

Convergence of 〈fn〉 is uniform on [0, 3]a) The limit function is continuous on [0, 3]b)

the limit function is bounded on [0, 3]c) The convergence is not pointwise on [0, 3]d)

15 (c)

16. The series
∞∑
n=1

xn

1 + xn
of functions converges

uniformly on [0, 1]a) pointwise on [0, 1]b)

sum function on [0, 1]c) all of thesed)

16 (a)

17. Let fn : [1, 2] → [0, 1] be given by fn(x) = (2 − x)n for all non-negative integers n. Let
f(x) = lim

n→∞
fn(x) for 1 ≤ x ≤ 2. Then which of the following is true?

f is a continuous function on [1, 2]a) fn converges uniformly to f on [1, 2] as
n→∞

b)

lim
n→∞

∫ 2

1
fn(x)dx =

∫ 2

1
f(x)dxc) For any a ∈ (1, 2) we have lim

n→∞
f ′n(a) 6=

f ′(a)

d)

17 (c)

18. Let {bn} and {cn} be sequences of real numbers. Then a necessary and sufficient condition
for the sequence of polynomials fn(x) = bnx + cnx

2 to converges uniformly to 0 on the
real line is
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lim
n→∞

bn = 0 and lim
n→∞

cn = 0a)
∞∑
n=1

|bn| <∞ and
∞∑
n=1

|cn| <∞b)

There exists a positive integer N such that bn = 0 and cn = 0 for all n > Nc)

lim
n→∞

cn = 0d)

18 (c)

19. Which one of the statement is true for the sequence of functions: fn(x) =
1

n2 + x2
, n =

1, 2, . . . , x ∈ [1/2, 1]?

The sequence is monotonic and has 0 as the limit for all x ∈ [1/2, 1] as n→∞a)

The sequence is not monotonic but has f(x) =
1

x2
as the limit as n→∞b)

The sequence is monotonic and has f(x) =
1

x2
as the limit as n→∞c)

The sequence is not monotonic but has 0 as the limitd)

19 (a)

20. For n ≥ 1, let fn(x) = xe−nx
2
, x ∈ R. Then the sequence {fn} is

Uniformly convergent on Ra) Uniformly convergent only on compact
subset of R

b)

Bounded and not uniformly convergent
on R

c) A sequence of unbounded functionsd)

20 (a)

21. Let fn(x) = n sin2n+1 x cosx. Then the value of lim
n→∞

∫ π/2

0
fn(x)dx−

∫ π/2

0
lim
n→∞

fn(x)dx

is

1
2a) 0b) −1

2c) −∞d)

21 (a)

22. Let {fn} be a sequence of continuous real-valued functions defined on [0,∞). Suppose
fn(x)→ f(x) for all x ∈ [0,∞) and that f is integrable. Then∫ ∞

0
fn(x)dx→

∫ ∞
0

f(x)dx as n→∞a)

If fn → f uniformly on [0,∞),then
∫ 1

0
fn(x)dx→

∫ 1

0
f(x)dxb)

If fb → f uniformly on [0,∞), then
∫ ∞
0

fn(x)dx→
∫ ∞
0

f(x)dxc)

If
∫ 1

0
|fn(x)− f(x)| → 0, then fn → f uniformly on [0, 1]d)
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22 (b)

23. Let f : R → R be strictly increasing continuous function. If 〈an〉 is a sequence in [0, 1],
then the sequence 〈f(an)〉 is

increasinga) boundedb) convergentc) not necessarily boundedd)

23 (b)

24. The series
∞∑
n=1

1

n2 + n3x2
converges uniformly for

all x ∈ Ra) x ≥ 0b) x ∈ [0, 1]c) [a,∞), a > 0d)

24 (a)

25. Which of the following conditions below imply that a function f : [0, 1]→ R is necessarily
of bounded variation?

f is a monotone function on [0, 1]a) f is a continuous and monotone func-
tion on [0, 1]

b)

f has a derivative at each x ∈ (0, 1)c) f has a bounded derivative on the inter-
val (0, 1)

d)

25 (a), (b), (c)

26. Let f : R→ [0,∞) be a non-negative real valued continuous function. Let φn(x) ={
n if f(x) ≥ n
0 if f(x) < n

, φn,k(x) =


k

2n
if f(x) ∈

[ k
2n
,
k + 1

2n

)
0 if f(x) 6∈

[ k
2n
,
k + 1

2n

) and gn(x) = φn(x) +

n2n−1∑
k=0

φn,k(x). As n ↑ ∞, which of the following are true?

gn(x) ↑ f(x) for every x ∈ Ra)

Given any C > 0, gn(x) ↑ f(x) uniformly on the set {x : f(x) < C}b)

gn(x) ↑ f(x) uniformly for x ∈ Rc)

Given any C > 0, gn(x) ↑ f(x) uniformly on the set {x : f(x) ≥ C}d)

26 (a), (b)

27. Let An ⊆ R for n ≥ 1, and χn : R → {0, 1} be the function χn(x) =

{
0 if x 6∈ An
1 if x ∈ An

.

Let g(x) = lim
n→∞

supχn(x) and h(x) = lim
n→∞

χn(x)
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If g(x) = h(x) = 1,then there exists m such that for all n ≥ m we have x ∈ Ana)

If g(x) = 1 and h(x) = 0. then there existm such that for all n ≥ mwe have x ∈ Anb)

If g(x) = 1 and h(x) = 0 then there exists a sequence n1, n2, . . . of distinct integers
such that x ∈ Ank

for all k ≥ 1

c)

If g(x) = h(x) = 0 then there exists m such that for all n ≥ m we have x 6∈ And)

27 (a), (c), (d)

28. Let {fn} be a sequence of continuous functions on R

If {fn} converges to f pointwise on R then lim
n→∞

∫ ∞
−∞

fn(x)dx =

∫ ∞
−∞

f(x)dxa)

If {fn} converges to f uniformly on R then lim
n→∞

∫ ∞
−∞

fn(x)dx =

∫ ∞
−∞

f(x)dxb)

If {fn} converges to f uniformly on R then f is continuous on R.c)

There exists a sequence of continuous functions {fn} on R, such that {fn} converges

to f uniformly on R, but lim
n→∞

∫ ∞
−∞

fn(x)dx 6=
∫ ∞
−∞

f(x)dx

d)

28 (c), (d)

29. For n ≥ 1, let gn(x) = sin2(x = 1
n , x ∈ [0,∞) and fn(x) =

x∫
0

gn(t)dt. Then

{fn} converges pointwise to a function f on [0,∞), but does not converge uniformly
on [0,∞)

a)

{fn} does not converge pointwise to nay function on [0,∞)b)

{fn} converges uniformly on [0, 1]c)

{fn} converges uniformly on [0,∞)d)

29 (c), (d)

30. Let t and a be positive real numbers. Define Ba = {x = (x1, x2, . . . , xn) ∈ Rn|x21 + x22 +

· · · + x2n ≤ a2}. Then for any compactly supported continuous function f on Rn which of
the following are correct?∫

Ba

f(tx)dx =

∫
Bta

f(x)t−ndxa)
∫
Ba

f(tx)dx =

∫
Btna

f(x)tdxb)∫
Rn

f(x+y)dx =

∫
Rn

f(x)dx for some

y ∈ Rn
c)

∫
Rn

f(tx)dx =

∫
Rn

f(x)tndxd)

30 (a), (c)

31. Consider all sequences {fn} of real valued continuous functions on [0,∞). Identify which
of the following statements are correct.
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If {fn} converges to f pointwise on [0,∞), then lim
n→∞

∫ ∞
0

fn(x)dx =

∫ ∞
0

f(x)dxa)

If {fn} converges to f uniformly on [0,∞),then lim
n→∞

∫ ∞
0

fn(x)dx =

∫ ∞
0

f(x)dxb)

If {fn} converges to f uniformly on [0,∞), then f is continuous on [0,∞)c)

There exists a sequence of continuous functions {fn} on [0,∞),such that {fn} con-

verges to f uniformly on [0,∞) but lim
n→∞

∫ ∞
0

fn(x)dx 6=
∫ ∞
0

f(x)dx

d)

31 (c), (d)

32. Find out which of the following series converge uniformly for x ∈ (−π, π)

∞∑
n=1

e−n|x|

n3
a)

∞∑
n=1

sin(xn)

n5
b)

∞∑
n=1

(x
n

)n
c)

∞∑
n=1

1

((x+ π)n)2
d)

32 (a), (b), (c)

33. Which one of the following is not uniformly convergent for all x ∈ R ?

∞∑
n=1

cosnx

n2
a)

∞∑
n=1

cosnx

n3
b)

∞∑
n=1

sinnx

n2
c)

∞∑
n=1

sinnx√
n

d)

33 (d)

34. Let fn(x) = (−x)n, x ∈ [0, 1]. Then decide which of the following are true.

There exist a pointwise convergent sub sequence of fna)

fn has no pointwise convergent sub sequenceb)

fn converges pointwise everywhere.c)

fn has exactly one pointwise convergent sub sequenced)

34 (a)

35. The series
∞∑
n=0

2−n sin(2nx)

converges pointwise on R but not uniformlya) converges uniformly on Rb)

converges uniformly on [0,
π

2
] but not

on R

c) does not converge pointwise on Rd)

35 (b)

36. Let fn(x) =
√
x2 + n−2; ∀x ∈ R and n ∈ N. Then
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〈fn(x)〉 converges to x uniformly only
on a finite interval of R

a) 〈fn(x)〉 converges pointwise to |x| on
R but not uniformly there

b)

〈fn(x)〉 converges to |x| uniformly on
R

c) 〈fn(x)〉 converges pointwise to x on Rd)

36 (b)

37. If a function f(x) be such that f(x) =
∞∑
n=0

φn(x), where φn(x) = (1 − x)n, 0 ≤ x ≤ 1.

Then

the series does not converge uniformly on [0, 1]a)

f(x) is continuous on [0, 1]b)

the series may or may not converge uniformly on [0, 1]c)

the series converges uniformly on 0, 1] to x on Rd)

37 (a)

38. Let fn[0, 1]→ R be given by fn(x) =
2x2

x2 + (1− 2nx)2
;n ∈ N. Then the sequence {fn}

converges uniformly on [0, 1].a)

does not converge uniformly on [0, 1] but has a subsequence that converges uniformly
on [0, 1]

b)

does not converge pointwise on [0, 1]c)

converges pointwise [0, 1] but does not has a sequence that converges uniformly on
[0, 1]

d)

38 (d)

39. Let fn(x) =
x

{(n− 1)x+ 1}(nx+ 1)
and sn(x) =

n∑
j=1

fj(x) for x ∈ [0, 1]. Then the

sequence {sn}

converges uniformly on [0, 1].a) converges pointwise on [0, 1] but not uniformlyb)

converges pointwise for x = 0 but not
for x ∈ [0, 1]

c) does not converge for x ∈ [0, 1].d)

39 (b)

40. Let f be uniformly continuous on R and 〈an〉 converges to a in R. Let fn(x) = f(x+ an)

for all x ∈ R. Then

〈fn(x)〉 is only pointwise convergenta) 〈fn(x)〉 is uniformly convergent in Rb)

〈fn(x)〉 is divergent sequencec) 〈fn(x)〉 is only bounded but not point-
wise convergent

d)
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40 (b)

41. Let f : R → R be a non-zero function such that |f(x)| ≤ 1

1 + 2x2
for all x ∈ R. Defiune

real valued functions fn on R for all n ∈ N by fn(x) = f(x+n). Then the series
∞∑
n=1

fn(x)

converges uniformly

on [0, 1] but not on [−1, 0]a) on [−1, 0] but not on [0, 1]b)

on both [0, 1] and [−1, 0]c) neither on [0, 1] nor on [−1, 0]d)

41 (c)

42. Let fn(x) =
sinnx√

n
;n ∈ N and x ∈ R. Then as lim

n→∞
fn(x) =,

0a) a continuous functionb) a bounded functionc) does not existd)

42 (d)

43. Let fn(x) =
sinnx√

n
;n ∈ N and x ∈ [−1, 1]. Then as n→∞,

〈fn〉 does not converge uniformly in [−1, 1]a) lim
n→∞

∫ n

−1
fn(x)dx 6= 0b)

〈f ′n(x)〉 does not converge uniformly in
[−1, 1]

c) fn(x), n ∈ N is not uniformly continu-
ous in [−1, 1]

d)

43 (c)

44. The series
∞∑
n=1

sinnx√
n

;n ∈ N converges uniformly on

[5, 2π − 5]a) [10, 2π − 10]b)
[π

2
,
3π

2

]
c) does not converge

uniformly
d)

44 (c)

45. The series
∞∑
n=1

cosnx

n
;n ∈ N converges uniformly on

[10, 2π − 10]a) [4, 2π − 4]b)
[π

4
,
7π

4

]
c) none of thesed)

45 (c)

46. Let fn(x) =
1

1 + n2x2
for n ∈ N, x ∈ R. Which of the following are true ?

fn converges uniformly on [0, 1]a) fn converges pointwise on [0, 1] to a con-
tinuous function

b)

fn converges uniformly on [12 , 1]c) lim
n→∞

∫ 1

0
fn(x)dx =

∫ 1

0
( lim
n→∞

fn(x))dxd)
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46 (c), (d)

47. Let Cc(R) = {f : R → R| f is continuous and there exists a compact set K such that
f(x) = 0 for all x ∈ Kc}. Let g(x) = e−x

2
for all x ∈ R. For which of the following

statements are true?

There exists a sequence {fn} in Cc(R) such that fn → g uniformly.a)

There exists a sequence {fn} in Cc(R) such that fn → g pointwiseb)

If a sequence in Cc(R) converges pointwise to g then it must converge uniformly to gc)

There does not exist any sequence in Cc(R) converging pointwise to g.d)

47 (a), (b)

48. Which of the following sequence 〈fn(x)〉 of functions does not converge uniformly on
[0, 1]?

e−x

n
a) (1− x)nb)

x2 + nx

n
c)

sin(nx+ n)

n
d)

48 (b)

49. Let fn : [1, 2] → [0, 1] be given by fn(x) = (2 − x)n;n ∈ N. Let f(x) = lim
n→∞

fn(x),
1 ≤ x ≤ 2. Then which of the following is true?

f is continuous function on [1, 2]a) fn converges uniformly to f on [1, 2]b)

lim
n→∞

∫ 2

1
fn(x) dx =

∫ 2

1
f(x) dxc) ∀a ∈ (1, 2), lim

n→∞
f ′n(a) 6= f ′(a)d)

49 (d)

50. Let fn : [−1, 1] → R be given by fn(x) =
x2n

1 + x2n
;n ∈ N and f(x) = lim

n→∞
fn(x). Let

f(x) = lim
n→∞

fn(x), 1 ≤ x ≤ 2. Then

f is continuous function on [−1, 1]a) fn → f uniformly to on [−1, 1]b)

f is integrable on [−1, 1]c) none of thesed)

50 (c)

51. Let fn(x) = n2x2e−nx;n ∈ N and x ≥ 0. Then 〈fn〉 converges uniformly on

[0,∞)a) [a,∞) for a > 0b)

convergence is not uniform anywherec) each fn is discontinuousd)

51 (b)

52. Let fn(x) = log(n2 + x2);n ∈ N and x ∈ R. Then
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〈fn〉 converges uniformly on Ra) 〈f ′n〉 converges uniformly on Rb)

〈fn〉 converges pointwise on Rc) 〈f ′n〉 is not convergent on Rd)

52 (b)

53. The series
∞∑
n=1

(−1)nx2n

np(1 + x2n)
is uniformly convergent for all x ∈ R if p is

0a)
1

2
b)

3

4
c) 2d)

53 (d)

54. If the series
∞∑
n=1

cosnx

np
converges uniformly on R. Then a value of p is

1a)
2

3
b)

3

2
c) −1d)

54 (c)

55. If the series
∞∑
n=1

sinnx

np
converges uniformly on R. Then a value of p is

1a)
7

5
b)

5

7
c)

1

2
d)

55 (b)

[Short Answer Type Questions]

1. Find the limit function f , for the following sequence 〈fn〉 of functions

(a) fn(x) =
x

1 + nx
; 0 ≤ x <∞. Ans: f(x) = 0, ∀x ∈ [0,∞)

(b) fn(x) = n2x(1− x2)n; 0 ≤ x ≤ 1. Ans: f(x) = 0

(c) fn(x) =
nx

1 + n2x2
; x ∈ R. Ans: f(x) = 0, ∀x ∈ R

(d) fn(x) =
cosnx

n
; x ∈ R+. Ans: f(x) = 0, ∀x ∈ R+

(e) fn(x) =
x2n

1 + x2n
; x ∈ R. Ans: f(x) = 0, |x| < 1, 12 , |x| = 1, 1, |x| > 1

(f) fn(x) =
x4n

1 + x4n
; x ∈ [−1, 1]. Ans: f(x) = 0, |x| < 1, 12 , x = ±1

2. Use the definition to examine uniform convergence of the sequence 〈fn(x)〉 on [0,∞),
where fn(x) =

x

x+ n
a) xe−nxb) n2x2e−nxc)

Ans : a) NUC b) UC c) NUC
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3. Discuss the uniform convergence of the following sequence of functions 〈fn(x)〉 defined by
setting fn(x) =

x

1 + nx2
;x ∈ [0, 1]a)

nx

1 + n3x2
;x ∈ [0, 1]b) xe−nx;x ≥ 0c){

nx; 0 ≤ x ≤ 1
n

1; 1
n < x ≤ 1

d)

Ans : a) UC b) UC c) UC d) NUC

4. Study the uniform convergence on [0, 1] of the sequence of functions 〈fn(x)〉, defined by
setting fn(x) =

1

1 + (nx− 1)2
a)

x2

x2 + (nx− 1)2
b) xn(1− x)c)

nxn(1− x)d) n3xn(1− x)4e)
nx2

1 + nx
f)

1

1 + xn
g)

5. Study the uniform convergence of 〈fn(x)〉 on A and B, defined by setting fn(x) =

cosn x(1− cosn x); A =
[
0, π2

]
, B =

[
π
4 ,

π
2

]
a)

cosn x sin2n x; A = R, B =
[
0, π4

]
b)

6. A function f defined by f(x) =
∞∑
n=1

cosnx

10n
, x ∈ R. Show that f is continuous for any

x ∈ R.

7. Prove or disprove:
∞∑
n=1

2−n cos(3nx) represents an everywhere continuous function.

8. If
∞∑
n=1

an is absolutely convergent, prove that the series
∞∑
n=1

anx
n

1 + x2n
converges uniformly

for all x ∈ R.

9. Show that
∞∑
n=1

1

2n−1
√

1 + nx
is uniformly convergent throughout the positive x-axis.

10. Discuss the convergence and uniform convergence of the series
∞∑
n=1

un(x), where un(x) is

given by

1

x2 + n2
;x ∈ Ra)

1

n2x2
;x ∈ R/{0}b) sin

( x
n2

)
;x ∈ Rc)

1

xn + 1
;x ∈ R/{0}d)

xn

1 + xn
;x ≥ 0e)

(−1)n

n+ x
;x ≥ 0f)

rn sinnx; 0 < r < 1, x ∈
R

g)
1

n3 + n4x2
;x ∈ Rh)
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Ans : a) UC b) NUC c) UC on |x| ≤ a, a > 0 d) UC on [a,∞], a > 1 e) NUC f) NUC g)
UC h) UC

11. For a function f defined on [a, b] set fn(x) =
[nf(x)]

n
;n ∈ N and x ∈ [a, b]. Show that

〈fn(x)〉 converges uniformly to f(x) on [a, b].

12. Examine whether
∞∑
n=p

[
4−n sin(3nπx) +

cos(n2x)

pn

]
is uniformly convergent on R, where

p is a positive integer ≥ 2. Hints : If the given series is of the form
∞∑
n=p

un(x), then

|un(x)| ≤ 1

4n
+

1

pn
= Mn.

13. Find where the following series converge pointwise:
∞∑
n=1

1

1 + xn
;x 6= −1a)

∞∑
n=1

xn

1 + xn
;x 6= −1b)

∞∑
n=1

2n + xn

1 + 3nxn
;x 6= −1

3
c)

∞∑
n=1

xn−1

(1− xn)(1− xn+1)
;x 6= −1, 1d)

∞∑
n=1

x2
n−1

1− x2n
;x 6= −1, 1e)

∞∑
n=2

( lnx

n

)x
f)

∞∑
n=1

xlnn;x > 0g)
∞∑
n=0

sin2(2π
√
n2 + x2)h)

14. Study the uniform convergence of the following series on the given set A:

∞∑
n=2

[π
2
− tan−1

(
n2(1 + x2)

)]
;A = R Hints: tan−1

1

n2(1 + x2)
<

1

n2(1 + x2)
<

1

n2
= Mn

a)

∞∑
n=1

ln(1 + nx)

nxn
;A = [2,∞) Hints: Mn =

1

2n−1
b)

∞∑
n=1

n2x2e−n
2|x|;A = R Hints: Mn =

4

e2n2
c)

∞∑
n=1

x2
(

1 − x2
)n−1

;A = [−1, 1] Hints: f(x) =

{
1; x ∈ [−1, 1]/{0}
0; x = 0

is not

continuous

d)

∞∑
n=1

n2√
n!

(
xn + x−n

)
;A = {x ∈ R :

1

2
≤ |x| ≤ 2} Hints: Mn =

n2√
n!

2n+1e)

∞∑
n=1

2n sin
1

3nx
; A = (0,∞)f)

∞∑
n=2

ln
(

1 +
x2

n ln2 n

)
;A = (−a, a), a > 0 Hints: Mn =

a2

n ln2 n
g)
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Ans : a) UC b) UC c) UC d) NUC e) UC f) NUC g) UC

15. Study the continuity on [0,∞) of the function f defined by f(x) =
∞∑
n=1

x

{(n− 1)x+ 1}(nx+ 1)
.

Hints: f(x) =

{
1; x > 1

0; x = 0
is not continuous

16. Study the continuity of the sum of the following series on the domain of its pointwise con-
vergence:

∞∑
n=0

xn

n!
sin(nx)a)

∞∑
n=0

xn
2

b)
∞∑
n=1

n2nxnc)
∞∑
n=1

lnn(x+ 1)d)

Ans : a) Converges absolutely on R and the sum function is also continuous on R b)
Converges absolutely on (−1, 1) and the sum function is also continuous on (−1, 1) c)
Converges absolutely on (−1/2, 1/2) and the sum function is also continuous on (−1/2, 1/2)

d) Converges absolutely on (1e − 1, e − 1) and the sum function is also continuous on
(1e − 1, e− 1)

17. Show that the series
∞∑
n=1

x sin(n2x)

n2
converges pointwise to a continuous function on R.

18. Determine whether the series
∞∑
n=1

∣∣∣x∣∣∣√n converges pointwise, and study the continuity of

the sum. Ans : Converges in (0, 1) and the sum function is also continuous there.

19. Let φ be continuous on [0, 1]. Then the sequence 〈fn〉 defined by fn(x) = xnφ(x) converges
uniformly on [0, 1] if and only if φ(1) = 0.

20. Verify that the sequence 〈fn(x)〉, where fn(x) = n sin
√

4π2n2 + x2 converges uniformly
on [0, a], a > 0. Does 〈fn(x)〉 converge uniformly on R ?

21. (a) Suppose that the series
∞∑
n=1

un(x);x ∈ A, converges uniformly on A and that s : A→

R is bounded. Prove that the series
∞∑
n=1

s(x)un(x) converges uniformly on A.

(b) Show by example that boundedness of s is essential. Under what assumption concern-

ing s does the uniform convergence of the series
∞∑
n=1

s(x)un(x) imply the uniform

convergence of
∞∑
n=1

un(x) on A?

22. Assume that 〈fn(x)〉 is a sequence of functions defined on A and such that

fn(x) ≥ 0 for x ∈ A and n ∈ Na) fn(x) ≥ fn+1(x) for x ∈ A and n ∈ Nb)

supx∈A fn(x) −→ 0 as n→∞.c)
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Prove that
∞∑
n=1

(−1)n+1fn(x) converges uniformly on A. Hints : For x ∈ A, the series

∞∑
n=1

(−1)nfn(x) converges by the Leibnitz Theorem. Moreover,

sup
x∈A
|Rn(x)| = sup

x∈A

∣∣∣ ∞∑
k=n+1

(−1)k+1fk(x)
∣∣∣ ≤ sup

x∈A
fn+1(x)

23. Prove that the following series converge uniformly on R:
∞∑
n=1

(−1)n+1

n+ x2
a)

∞∑
n=1

(−1)n+1

3
√
n+ x2 + x2

b)
∞∑
n=2

(−1)n+1

√
n+ cosx

c)

Hints : Use the Exercise 22.

24. Determine the domain A of pointwise convergence and the domain B of absolute conver-
gence of the series given below. Moreover, study the uniform convergence on the indicated
set C.

∞∑
n=1

1

n
2n(3x− 1)n; C =

[
1
6 ,

1
3

]
a)

∞∑
n=1

1

n

(x+ 1

x

)n
, C = [−2,−1]b)

Ans: a) A =
[
1
6 ,

1
2

)
and B =

(
1
6 ,

1
2

)
UC on C b) A = (−∞,−1

2 ] and B =

(−∞,−1
2), UC on C

25. Assume that the functions fn, gn : A→ R, n ∈ N, satisfy the following conditions:

(a) the series
∞∑
n=1

∣∣∣fn+1(x)− fn(x)
∣∣∣ is uniformly convergent on A

(b) sup
x∈A
|fn(x)| → 0 as n→∞

(c) the sequence 〈Gn(x)〉, where Gn(x) =
n∑
k=1

gk(x), is uniformly bonded on A.

Prove that the series
∞∑
n=1

fn(x)gn(x) is uniformly convergent on A.

26. Show that the following series converge uniformly on the indicated set A:
∞∑
n=1

(−1)n+1x
n

n
;A = [0, 1]a)

∞∑
n=1

sin(nx)

n
;A = [α, 2π−α], 0 < α <

π

b)

∞∑
n=1

sin(n2x) sin(nx)

n+ x2
;A = Rc)

∞∑
n=1

sin(nx) tan−1(nx)

n
;A = [α, 2π −

α], 0 < α < π

d)

∞∑
n=1

(−1)n+1 1

nx
;A = [a,∞), a > 0e)

∞∑
n=1

(−1)n+1 e−nx√
n+ x2

;A = [0,∞)f)

Dr. Prasun Kumar Nayak Home Study Materiel



58 Small Overview On Uniform Convergence

27. Let f, fn : [0, 1] → R be continuous functions. Compute the following sentence such that
both statements (a) and (b) below are true: Let fn → f :

lim
n→→∞

∫ 1

0
fn(x)dx =

∫ 1

0
f(x) dxa) lim

n→→∞
lim
x→0

fn(x) = lim
x→0

lim
n→→∞

fn(x)b)

Ans : 27 Uniformly on [0, 1]

28. Let fn(x) = xn for n ∈ N. Which of the following statements are ture?

The sequence 〈fn(x)〉 converges uniformly on [14 ,
1
2 ]a)

The sequence 〈fn(x)〉 converges uniformly on [0, 1]b)

The sequence 〈fn(x)〉 converges uniformly on (0, 1)c)

Ans : 28 (a)

29. Give examples to illustrate that all the hypotheses in Dini’s Theorem (Theorem 5) are es-
sential.

30. Let 〈rn〉 be a sequence consisting of all the rational numbers and for n = 1, 2, · · · , we

define the functions fn on R by fn(x) =

{
1; x = rn
0; otherwise

. Prove that 〈fn(x)〉 converges

pointwise but not uniformly on every interval of R.

[Long Answer Type Questions]

1. Determine whether the sequence 〈fn(x)〉 converges uniformly on A, defined by setting
fn(x) =

tan−1
2x

x2 + n3
;A = Ra) n ln

(
1 +

x2

n

)
;A = Rb)

n ln
1 + nx

nx
;A = (0,∞)c) 2n

√
1 + x2n;A = Rd)

n
√

2n + |x|n;A = Re)
√
n+ 1 sinn x cosx;A = Rf)

n( n
√
x− 1);A = [1, a], a > 1g)

2. Prove that for the sequence 〈fn〉, fn → f pointwise on a point set E ⊂ R, the convergence
is uniform.

3. (a) Suppose that 〈fn〉 ∈ F(E;R)N converges to f uniformly on E and that each fn is
bounded on E. Show that 〈fn〉 is uniformly bounded; i.e., there is an M > 0 such
that |fn(x)| ≤M for all n ∈ N and all x ∈ E.

(b) Let fn(x) =
1

x
+
x

n
for all x ∈ (0, 1]. Show that 〈fn〉 converges uniformly to f(x) =

x−1 on (0, 1] and yet the fn and f are all unbounded on (0, 1].

4. Let E ⊂ R and 〈fn〉 ∈ F(E;R)N. Prove that, a sequence of functions 〈fn(x)〉n defined on
E0 converges uniformly on E0 ⊂ E if and only if corresponding to an ε > 0, ∃N0(ε) ∈ N
such that

∣∣fn+p(x)− fn(x)
∣∣ < ε, for n ≥ N and ∀x ∈ E0.
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5. Prove that, a sequence 〈fn〉 ∈ F(E;R)N, where E ⊂ R; converges uniformly on E0 ⊂ E

if and only if lim
n−→∞

sup
{
|fn(x)− f(x)| : x ∈ E0

}
= 0.

6. Prove that, a sequence 〈fn〉 ∈ F(E;R)N, where E ⊂ R; converges uniformly on E0 ⊂ E

if and only if, corresponding to an ε > 0, ∃N = N(ε) ∈ N, depends on ε only, such that

sup
{
|fm(x)− fn(x)| : x ∈ E0

}
< ε; whenever m,n ≥ N

7. Find the convergence set of each of the following sequences 〈fn(x)〉 of functions on [0, 1]

fn(x) = n2xn(1− x)a) fn(x) =
(

1 + x
n

)n
b) fn(x) = nx(1− x)n.c)

-

6

x

y

O
-

6

1

1
x

y

-

6

1
x

y

OO

f1

f2

f1

(a) (b) (c)

Figure 16: Figures of fn(x)

as depicted in the Figures 16 (a), (b) and (c) respectively. Also find sets on which these
converge uniformly.

8. If a sequence of functions 〈fn〉 converges uniformly to f on [a, b] and g is a bounded func-
tion on [a, b], show that the sequence of functions 〈gfn〉 converges uniformly to gf on [a, b].

9. If a sequence of functions 〈fn〉 converges uniformly on [a, b] to a function f and if c ∈ [a, b]

such that lim
n→c

fn(x) = αn, n ∈ N, show that the sequence 〈αn〉 is convergent.

10. If 〈fn〉 be a sequence of continuous real valued functions converging uniformly to f on a
set E(⊂ R). Show that lim

n→∞
fn(xn) = f(x) for any sequence 〈αn〉 in E converging to a

point x in E.

11. Suppose K is a compact set and let 〈fn(x)〉 be a sequence of continuous functions converg-
ing pointwise to a continuous functions f and fn ≥ fn+1, then fn → f uniformly. Hints :
Theorem 5

12. (Dini’s Theorem of uniform convergence of a series of functions) Let I ⊂ R be a compact
interval and suppose that 〈un〉 ∈ F(E;R)N is a sequence of continuous functions such

that the series
∞∑
n=1

un converging pointwise to a continuous function s : I → R. If the

fn is increasing (i.e., un(x) ≤ un+1(x) for all x ∈ I and n ∈ N) or decreasing (i.e.,

un(x) ≥ un+1(x) for all x ∈ I and n ∈ N), then prove that
∞∑
n=1

un converges to s uniformly

on I .
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13. For each n ≥ 1, let fn(x) be a monotonic increasing real valued function on [0, 1] such that
the sequence 〈fn(x)〉 converges pointwise to a function f ≡ 0. Pick out the true statements
from the following:

Sequence 〈fn(x)〉 converges to f uniformlya)

If the functions fn are non-negative, then fn must be continuous for sufficiently large

n Hints : fn(x) =

{
0; x ∈ [0, 1)
1
n ; x = 1

b)

Ans: 13 (a)

14. Let fn and f be continuous functions on an interval [a, b] and assume that fn → f uniformly
on [a, b]. Pick out the true statements:

If fn is Riemann-integrable, then f is Riemann-integrable.a)

If f is continuously differentiable, then f is continuously differentiable.Hints : fn(x) =√
x2 +

1

n2
in [−1, 1]

b)

If xn → x in [a, b], then fn(x)→ f(x).c)

Ans: 14 (a), (c)

15. Pick out the sequence 〈fn〉 which are uniformly convergent NBHM’09

fn(x) = nxe−nx on (0,∞)a) fn(x) = xn on [0, 1]b) fn(x) =
sinnx√

n
on Rc)

Ans: 15 (c)

16. Test the following for uniformly convergent

The sequence of functions
〈 xn

1 + xn

〉
〉

over [0, 2]

a) The series f(x) =

∞∑
n=1

sinnx

n2 + 1
over [0, 2]b)

The sequence of functions
〈
n2x2e−nx

〉
〉 over (0, 1)c)

Ans: 16 (b)

17. In each of the following cases, examine whether the given sequence (or series) of functions
converges uniformly over the given domain NBHM’11

fn(x) =
nx

1 + nx
;x ∈

(0, 1)

a)
∞∑
n=1

n sinnx

en
;x ∈ [0, π]b) fn(x) =

xn

1 + xn
;x ∈

[0, 2]

c)

Ans: 17 (b)

18. Which of the following sequence (or series) of functions are uniformly convergent on [0, 1]

? NBHM’13
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fn(x) =
(

cos(πn!x)
)n

a) f(x) =

∞∑
n=1

cos(n6x)

n3
b) fn(x) = n2x(1− x2)nc)

Ans: 18 (b)

19. Let gn(x) =
1

n

[
f
(
x+

1

n
− f(x)

]
, where f : R→ R a continuous function. Which of the

following statements are ture? NBHM’14

If f(x) = x3, then gn → f ′ uniformly on R as n→∞a)

If f(x) = x2, then gn → f ′ uniformly on R as n→∞b)

If f is differentiable and f ′ is uniformly continuous on R, then gn → f ′ uniformly on
R as n→∞

c)

Ans: 19 (b)

20. Which of the following statements are true ? NBHM’14

The series
∞∑
n=1

x2

1 + n2x2
does not converge uniformly on Ra)

The series
∞∑
n=1

x2

1 + n2x2
converges uniformly on Rb)

The sum of the series
∞∑
n=1

sinnx2

1 + n2
defines a continuously differentiable function on Rc)

Ans: 20 (b), (c)

21. Which of the following statements are true ? NBHM’17

The series
∞∑
n=1

x2

(1 + x2)n
is UC on [−1, 1]a) lim

n→∞

∫ π

π/2

sinnx

nx5
= πb)

Define x ∈ R, f(x) =
∞∑
n=0

sinnx2

1 + n3
, then f is a continuously differentiable function.c)

Ans: 21 (c)

22. Let 〈fn(x)〉 be a sequence of continuous functions defined on [0, 1]. Assume that fn(x)→
f(x) for each x ∈ [0, 1]. Which of the following conditions imply that this convergence is
uniform ? NBHM’18

The function f is continuousa) fn(x) ↓ f(x) for every x ∈ [0, 1] Hints
: fn(x) = 1− x1/n

b)

The function f is continuous and fn(x) ↓ f(x) for every x ∈ [0, 1] Hints : Dini’s
Theorem 5

c)

Ans: 22 (c)
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23. Which of the following statements are true ? NBHM’19

The sequence of functions 〈fn(x)〉, defined by fn(x) = xn(1 − x), is uniformly
convergent on [0, 1]

a)

The sequence of functions 〈fn(x)〉, defined by fn(x) = n log
(

1 +
x2

n

)
, is uniformly

convergent on R

b)

The series
∞∑
n=1

2n sin
1

3nx
is uniformly convergent on [1,∞)c)

Ans: 23 (a), (c)

24. Test the uniform convergence of the sequence of functions 〈fn〉, defined by fn : [−k, k]→

R, where, fn(x) =
log(1 + n2x2)

n
;x ∈ [−k, k], k > 0.

25. Show that the sequence fn : x→ xn converges for each x ∈ I = {x : 0 ≤ x ≤ 1} but that
the convergence is not uniform.

26. In each of the following problems, show that the sequence 〈fn〉 converges to f for each
x ∈ I and determine whether or not the convergence is uniform:

(a) fn : x −→ 2x

1 + nx
; f(x) ≡ 0; I = {x : 0 ≤ x ≤ 1}

(b) fn : x −→ cosnx√
n

; f(x) ≡ 0; I = {x : 0 ≤ x ≤ 1}

(c) fn : x −→ n3x

1 + n4x
; f(x) ≡ 0; I = {x : 0 ≤ x ≤ 1}

(d) fn : x −→ n3x

1 + n4x2
; f(x) ≡ 0; I = {x : a ≤ x <∞, a > 0}

(e) fn : x −→ nx2

1 + nx
; f(x) ≡ x; I = {x : 0 ≤ x ≤ 1}

(f) fn : x −→ 1√
x

+
1

n
cos
(x
n

)
; f(x) ≡ 1√

x
; I = {x : 0 < x ≤ 2}

(g) fn : x −→ sinnx

2nx
; f(x) ≡ 0; I = {x : 0 < x <∞}

(h) fn : x −→ xn(1− x)
√
n; f(x) ≡ 0; I = {x : 0 ≤ x ≤ 1}

(i) fn : x −→ 1− xn

1− x
; f(x) ≡ 1

1− x
; I = {x : −1

2
≤ x ≤ 1

2
}

(j) fn : x −→ nxe−nx
2
; f(x) ≡ 0; I = {x : 0 ≤ x ≤ 1}

27. (a)
∞∑
n=1

(xe−x)n;x ∈ [0, 2]

(b)
∑ sin(x2 + n2x)

n(n+ 1)

(c)
∞∑
n=1

(−1)n
x2n

np(1 + x2n)
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28. Show that the series x4+
x4

1 + x4
+

x4

(1 + x4)2
+

x4

(1 + x4)3
+· · · is not uniformly convergent

on [0, 1].

29. Prove that if a series of continuous functions converges uniformly then the sum function is
also continuous.

30. Formulate and prove a result about the derivative of the sum of a convergent series of dif-
ferentiable functions.

31. Let 〈un〉 be a sequence of R-integrable functions on a compact interval [a, b] ⊂ R. If the

infinite series
∞∑
n=1

un converges uniformly to sum s on [a, b], then

(a) s ∈ R[a, b], i.e., s is R-integrable on [a, b], and

(b)
∫ x

a
s(t)dt =

∫ x

a

[ ∞∑
n=1

un(t)
]
dt =

∞∑
n=1

[ ∫ x

a
un(t)dt

]
32. Let 〈fn(x)〉 be a sequence of functions in C1[0, 1] such that fn(0) = 0 for all n ∈ N. Which

of the following statements are true ? NBHM’19

If the sequence 〈fn(x)〉 converges uniformly on [0, 1], then the limit function is in
C1[0, 1]

a)

If the sequence 〈f ′n(x)〉 is uniformly convergent over [0, 1], then the sequence 〈fn(x)〉
is also uniformly convergent over the same interval.

b)

If the sequence 〈fn(x)〉 converges uniformly on [0, 1], then the limit function is in
C1[0, 1]

c)

If the series
∞∑
n=1

f ′n(x) converges uniformly on [0, 1] to a function g, then g is Riemann

integrable and
∫ 1

0
g(t)dt =

∞∑
n=1

fn(x)

d)

Ans: 32 (b), (c)

33. Let {r1, r2, · · · , rn, · · · } be an enumeration of the rationals in the interval [0, 1]. Define, for

n ∈ N, and for each x ∈ [0, 1] fn(x) =

{
1; if x ∈ {r1, r2, · · · }
0; otherwise

Which of the following

statements are true? NBHM’19

The function fn is Riemann integrable over [0, 1] for each n ∈ Na)

The sequence 〈fn(x)〉 is pointwise convergent and the limit function is Riemann in-

tegrable over the interval [0, 1] Hints : f(x) =

{
1; if x ∈ Q
0; otherwise

b)

The sequence 〈fn(x)〉 is pointwise convergent but the limit function is not Riemann
integrable over [0, 1]

c)
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Ans: 33 (c)

34. Let 〈fn〉 be a sequence of continuous real valued functions defined on R converging uni-
formly on R to a function f . Which of the following statements are true? NBHM’16

If each of the functions fn is bounded, then f is also bounded.a)

If each of the functions fn is uniformly continuous, then f is also uniformly continuous.b)

If each of the functions fn is integrable, then lim
n→∞

∫ ∞
−∞

fn(x) dx =

∫ ∞
−∞

f(x)dx.c)

Ans: 34 (a),(b)

35. Let 〈fn(x)〉 be a sequence of non-negative continuous functions defined on [0, 1]. Assume
that fn(x) → f(x) for each x ∈ [0, 1]. Which of the following conditions imply that

lim
n→∞

∫ 1

)
fn(x)dx =

∫ 1

0
f(x)dx ? NBHM’18

fn(x) ↑ f(x) for every x ∈ [0, 1]a)

fn(x) ≤ f(x) for every x ∈ [0, 1]. Hints : Actually the limit of non-negative
continuous functions may not be R integrable function but the additional condition
fn(x) ≤ f(x) makes not only f R integrable but the limit of integration is also
convergent.

b)

The function f is continuous Hints : Consider the functions fn : [0, 1]→ R, defined

by fn(x) =

{
n− n2x; if 0 < x < 1

n

0; otherwise

c)

Ans: 35 (a), (b)

36. Let 〈fn〉 be a sequence of bounded real valued functions on [0, 1] converging to f at all
points of this interval. Which of the following statements are ture? NBHM’14

If fn and f are all continuous, then lim
n→∞

∫ 1

0
fn(x)dx =

∫ 1

0
f(x)dxHints : Example

10

a)

If fn → f uniformly, on [0, 1], then lim
n→∞

∫ 1

0
fn(x)dx =

∫ 1

0
f(x)dx. Hints : Theo-

rem 14

b)

If
∫ 1

0

∣∣∣fn(x) − f(x)
∣∣∣dx → 0 and n →→ ∞, then lim

n→∞

∫ 1

0
fn(x)dx =

∫ 1

0
f(x)dx

Hints : Using the inequality
∣∣∣ lim
n→∞

∫ 1

0
fn(x)dx−

∫ 1

0
f(x)dx

∣∣∣ ≤ lim
n→∞

∫ 1

0
|fn(x)−

f(x)| dx

c)

Ans: 36 (b),(c)
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37. Let 〈fn(x)〉 and f be integrable functions on [0, 1] such that lim
n→∞

∫ 1

0
|fn(x)−f(x)|dx = 0.

Which of the following statements are true? NBHM’19

fn(x)→ f(x), as n→∞, for almost every x ∈ [0, 1]a)

lim
n→∞

∫ 1

0
fn(x)dx =

∫ 1

0
f(x)dxb)

If 〈gn(x)〉 is a uniformly bounded sequence of continuous functions converging point-

wise to a function g, then
∫ 1

0
|fn(x)gn(x)− f(x)g(x)|dx = 0 as n→∞

c)

Ans: 37 (b), (c)

38. Let 〈fn〉 be a sequences of continuous real valued functions defined on [a, b] and also let
〈an〉 and 〈bn〉 be two sequences on [a, b] such that lim

n→∞
an = a and lim

n→∞
bn = b. If 〈fn〉

converges uniformly to f on [a, b], then show that lim
n→∞

∫ bn

an

fn(x)dx =

∫ b

a
f(x)dx.

39. Let f(x) =

{
an+1; if x = n ∈ [0, 2014] ∩ Z

0; otherwise
, where 〈an〉 is a real sequence. Is f

integrable on [0, 2014]? If so, find
∫ 2014

0
f(x)dx. Ans: 0

40. Let 〈fn〉 be a sequence defined by fn(x) =


n2x; 0 ≤ x ≤ 1

n

2n− n2x; 1
n < x ≤ 2

n for ∀n ≥ 2

0; 2
n < x ≤ 1

. Then

show that

(a) The sequence 〈fn〉 is not uniformly convergent on [0, 1].

(b) each fn is Riemann integrable on [0, 1]

(c) 〈fn〉 has a pointwise limit f which is also Riemann integrable on [0, 1] and

(d) lim
n→∞

∫ 1

0
fn(x)dx 6=

∫ 1

0
f(x)dx.

41. For what values of p, the sequence 〈fn〉 defined on [0, 1] by fn(x) =
nx

1 + n2xp
(p > 0)

for x ∈ [0, 1] converges uniformly on [0, 1]. Examine further for p = 2 and p = 4 if

lim
n→∞

∫ 1

0
fn(x)dx =

∫ 1

0
lim
n→∞

fn(x)dx.

42. Show that the sequence of functions 〈fn〉 defined on [0, 1] by fn(x) = n2x(1−x2)n, n ∈ N

for x ∈ [0, 1] converges pointwise to a function f on [0, 1]. By establishing lim
n→∞

∫ 1

0
fn(x)dx 6=∫ 1

0
f(x)dx, show that the sequence 〈fn〉 is not uniformly convergent on [0, 1].
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43. Show that for the sequence of continuous functions 〈fn〉, where fn(x) =

{
1− nx; x ∈ [0, 1n ]

0; x ∈ ( 1
n , 1]

the pointwise limit function is not continuous in [0, 1] and hence deduce that lim
x→0
{ lim
n→∞

fn(x)} 6=
lim
n→∞

{ lim
x→0

fn(x)}.

44. Show that the sequence 〈fn〉 of functions defined by fn(x) =

∫ x

0

t dt

1 + n2t
, x ≥ 0 converges

uniformly to 0 on [0, a), a > 0; but not on [0,∞).

a)

5 The Weierstrass Approximation Theorem

The name Weierstrass has occurred frequently in this chapter. In fact Karl Weierstrass (1815-1897)
revolutionized analysis with his examples and theorems. This section is devoted to one of his most
striking results. We introduce it with a motivating discussion.

Definition 5. Bernstein polynomial : For f : [0, 1] −→ R, let Bn(f, x) be the Bernstein
polynomial of order n associated with the function f , defined by

Bn(f, x) =

n∑
k=0

(
n

k

)
f
(k
n

)
xk(1− x)n−k. (6)

The Bernstein polynomial of the continuous function f0(x) = 1 is given by

Bn(f0) =
n∑
k=0

(
n

k

)
f0

(k
n

)
xk(1− x)n−k

=
n∑
k=0

(
n

k

)
xk(1− x)n−k =

(
x+ (1− x)

)n
= 1 (7)

The Bernstein polynomial of the continuous function f1(x) = x is given by

Bn(f1) =

n∑
k=0

(
n

k

)
f1

(k
n

)
xk(1− x)n−k =

n∑
k=0

(
n

k

)
k

n
· xk(1− x)n−k

= x

n∑
k=1

(
n− 1

k − 1

)
xk−1(1− x)n−k = x

(
x+ (1− x)

)n−1
= x = f1(x) (8)
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The Bernstein polynomial of the continuous function f2(x) = x2 is given by

Bn(f2) =
n∑
k=0

(
n

k

)(k
n

)2
· xk(1− x)n−k =

n∑
k=0

k

n
·
(
n− 1

k − 1

)
· xk(1− x)n−k

=
n∑
k=0

{k − 1

n− 1
· n− 1

n
+

1

n

}
·
(
n− 1

k − 1

)
· xk(1− x)n−k

=
n∑
k=0

[{
1− 1

n

}
·
(
n− 2

k − 2

)
+

1

n

(
n− 1

k − 1

)]
· xk(1− x)n−k

=
(

1− 1

n

) n∑
k=2

·
(
n− 2

k − 2

)
xk(1− x)n−k +

1

n

n∑
k=1

1

n

(
n− 1

k − 1

)
xk(1− x)n−k

=
(

1− 1

n

)
x2 +

1

n
x =

(
1− 1

n

)
f2(x) +

1

n
f1(x) (9)

This shows that the Bernstein polynomial Bn(f2) converges to f2(x) on any bounded subset of R.

EXAMPLE 56. Prove that
x(1− x)

n
=

n∑
k=0

xk(1− x)n−k
(
x− k

n

)2
.

Solution: Differentiate both sides of Eq. (7), we obtain

0 =

n∑
k=0

(
n

k

)[
kxk−1(1− x)n−k + xk(n− k)(1− x)n−k−1 · (−1)

]
=

n∑
k=0

(
n

k

)
(k − nx)xk−1(1− x)n−k−1 (10)

Multiply both sides of Eq. (10) by x(1− x), we get

0 =
n∑
k=0

(
n

k

)
(k − nx)xk(1− x)n−k (11)

Differentiate both sides of Eq. (11), we obtain

0 = −n
n∑
k=0

(
n

k

)
xk(1− x)n−k +

n∑
k=0

(
n

k

)
(k − nx)

{
(k − nx)xk−1(1− x)n−k−1

}
= −n+

n∑
k=0

(
n

k

)
(k − nx)2xk−1(1− x)n−k−1 (12)

Multiply both sides of Eq. (12) by x(1− x), we get

0 = −nx(1− x) +
n∑
k=0

(
n

k

)
(k − nx)2xk(1− x)n−k

or, nx(1− x) =

n∑
k=0

(
n

k

)
(k − nx)2xk(1− x)n−k

or,
x(1− x)

n
=

n∑
k=0

xk(1− x)n−k
(
x− k

n

)2
.
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THEOREM 18. For f : [0, 1] −→ R, let Bn(f, x) be the Bernstein polynomial of order n of the
function f as in Eq. (6). If f is continuous on [0, 1], then 〈Bn(f, x)〉 converges uniformly on [0, 1]

to f .

Proof: Using the equality (7), we get

f(x) =
n∑
k=0

f(x)

(
n

k

)
xk(1− x)n−k.

Consequently, ∣∣∣Bn(f, x)− f(x)
∣∣∣ ≤ n∑

k=0

∣∣∣f(k
n

)
− f(x)

∣∣∣(n
k

)
xk(1− x)n−k (13)

By the uniform continuity of f on [0, 1], given ε > 0, there is δ > 0 such that

|f(x)− f(x′)| < ε; whenever |x− x′| < δ;x, x′ ∈ [0, 1]

Clearly, there is M > 0 such that |f(x)| ≤M for x ∈ [0, 1]. Then the set {0, 1, 2, · · · , n} can be

decomposed into the two sets : A =
{
k :
∣∣∣k
n
− x
∣∣∣ < δ

}
and B =

{
k :
∣∣∣k
n
− x
∣∣∣ ≥ δ

}
. If k ∈ A,

then
∣∣∣f(k

n

)
− f(x)

∣∣∣ < ε and so

∑
x∈A

∣∣∣f(k
n

)
− f(x)

∣∣∣(n
k

)
xk(1− x)n−k < ε

∑
x∈A

(
n

k

)
xk(1− x)n−k ≤ ε (14)

If k ∈ B, then
(k − nx)2

n2δ2
≥ 1, then

∑
k∈B

∣∣∣f(k
n

)
− f(x)

∣∣∣(n
k

)
xk(1− x)n−k

≤ 2M

n2δ2

∑
k∈B

(k − nx)2
(
n

k

)
xk(1− x)n−k ≤ M

2nδ2
(15)

This Equation (15) combined with Eqs. (13) and (14) yields∣∣∣Bn(f, x)− f(x)
∣∣∣ ≤ ε+

M

2nδ2
; x ∈ [0, 1]

This proves the theorem. 2

THEOREM 19 (Approximation theorem of Weierstrass). If f : [a, b]→ R be a continuous function
on an interval [a, b], then for ε > 0 there is a polynomial p(x) such that

|f(x)− p(x)| < ε; x ∈ [a, b]

In particular, there exists a sequence 〈pn(x)〉 of polynomial functions such that pn(x) −→ f(x)

on [a, b].
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Proof: We know that for each n ∈ N, ∃ a polynomial pn(x) such that

|pn(x)− f(x)| < 1

n
; ∀x ∈ [a, b]

Taking n = 1, 2, 3, · · · , we get the sequence of polynomials 〈pn(x)〉. Let ε > 0 be chosen
arbitrary. Choose N ∈ N such that N > 1

ε . Then

|pn(x)− f(x)| < 1

n
≤ 1

N
< ε; ∀n ≥ N and ∀x ∈ [a, b]

N depends only on ε. Therefore, 〈pn(x)〉 converges uniformly to f on [a, b].
The geometrical significance of this this theorem lies in the fact that, the graph (Fig. 17) of the

-

6

x

y
y = f(x) + ε

y = f(x)− ε

y = f(x)

y = pn(x)

Figure 17: The Weierstrass Approximation Theorem

polynomial pn(x) is confined within the region bounded by y = f(x) − ε and y = f(x) + ε for
all x ∈ (a, b). This theorem does not guarantee the existence of an polynomial, even if how to
construct the polynomial.

EXAMPLE 57. Let f ∈ C[0, 1]. Determine the cases where the given condition implies that f ≡ 0:
NBHM’07,’10∫ π

0
xnf(x)dx = 0 for all n ≥ 0a)

∫ π

0
xnf(x) cosnxdx = 0 for all n ≥ 0b)

∫ π

0
xnf(x) sinnxdx = 0 for all n ≥ 1c)

Solution: (a) For any given f ∈ C[0, 1], by Weierstrass polynomial approximation theorem, there

exists a function φ(x) =
m∑
k=0

akx
k such that |f(x) − φ(x)| < ε. Since

∫ π

0
xnf(x)dx = 0 for all

n ≥ 0, we have ∫ π

0
φ(x)f(x)dx =

m∑
k=0

ak

∫ π

0
xkf(x)dx = 0

Thus, as f is continuous on a compact set, it must be bounded (say bounded by M ). Consider∫ π

0
f2(x) dx =

∫ π

0
f(x)[f(x)− φ(x)]dx+

∫ π

0
φ(x)f(x)dx

< εMπ + 0
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Since ε > 0 is arbitrary, we have
∫ π

0
f2(x) dx = 0, implies f ≡ 0 as it is continuous. So this

option is correct.
(b) Extend f to fe on [−π, π] so that fe(−x) = f(x) for x ∈ [0, π]. Then, we have∫ π

−π
fe(x) cosnx dx = 2

∫ π

0
f(x) cosnxdx = 0;n ≥ 0

as fe and cos both are even functions. Similarly, we have
∫ π

−π
fe(x) sinnx dx = 0, as sin is odd,

n ≥ 1. Thus all the Fourier coefficients of fe are zero. By Parseval’s theorem,
∫ π

−π

∣∣∣fe(x)
∣∣∣2 dx =

0. The continuity of fe then imply fe = 0. Because of fe = f on [0, π], we have f ≡ 0. Therefore
option (b) is also correct.

(c) This option is again correct, similarly as option (b).

Problem Set

Short answer type questions
1. Let P denote the set of all polynomials in the real variable x which varies over the interval

[0, 1]. What is the closure of P in C[0, 1] ? Ans : C[0, 1]

Hints : Weierstrass approximation theorem.

Long answer type questions

1. Establish the identity:
x(1− x)

n
=

n∑
k=0

xk(1− x)n−k
(
x− k

n

)2
. Hints : Differentiate Eq.

(7)

2. Let f : [0, 1] −→ R be continuous. Assume that
∫ 1

)
xnf(x)dx = 0 for n ∈ N, then prove

that f = 0.

3. Show that there exists no sequence of polynomials 〈pn〉 such that pn → f on R, where

f(x) = sinxa) f(x) = exb)

4. Let f : R→ R be continuous. Show that we can find a sequence of polynomials 〈pn〉 such
that pn → f on any bounded subset of R.

5. Let f : (0, 1) → R be defined by f(x) =
1

x
. Show that there does not exist a sequence of

polynomials 〈pn〉 such that pn → f on (0, 1).

6. Keep the hypothesis of the Weierstrass approximation theorem, can we find a sequence of
polynomials 〈pn〉 such that

∑
pn = f on [0, 1] ?
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6 Sequence of Functions in a Compact Set

The following elementary lemma is needed to prove certain important theorems for the sequence
of complex functions in a compact set.

LEMMA 1. Suppose that the sequence

(i) 〈fn(x)〉 converges uniformly to f(x) on a compact set D and g(x) is a continuous function
on D. Then 〈g(x)fn(x)〉 converges to g(x)f(x) uniformly on D.

(ii) 〈un(x)〉 converges uniformly to S(x) on a compact set D and g(x) is a continuous function

on D. Then
∞∑
n=1

g(x)un(x) converges to g(x)S(x) uniformly on D.

THEOREM 20. Let 〈fn(x)〉 be a sequence of differentiable functions on a domain D. If fn(x) →
f(x) uniformly on every compact subset of D, then, for any k ≥ 1, f (k)n (x) → f (k)(x) for all
x ∈ D; i.e., the limit of the kth derivative is the kth derivative of the limit. Moreover, for each
k ≥ 1, the differentiated sequence

〈
f
(k)
n (x)

〉
converges to f (k)(x) uniformly on every compact

subset of D.

Proof:

RESULT 8. The above Theorem 20 does not hold if D is assumed to be an arbitrary set instead

of a domain. The sequence
{sinnx

n

}
converges uniformly to zero on the real axis; however, the

sequence of its derivative {cosnx} converges only at x = 0. Thus, the sequence
{sinnz

n

}
cannot

converge uniformly on any domain containing points of the real axis.

Definition 6. A sequence 〈fn(x)〉 of differentiable functions of a domain D ⊆ C converges nor-
mally to the differentiable function f(z) on D if it converges uniformly to f(z) on each compact
subsets in D.

6.1 Convergence in the Space of Differentiable Functions

In this section, we shall prove two important theorems namely, Ascoli-Arzela theorem and the
Motel’s theorem which guarantees that, given a family F of functions in R that any sequence in
F have a uniformly convergent subsequence.

Definition 7. [ Equicontinuous]: Let F be a family of collection of functions, defined and contin-
uous and real-valued on a compact subset E ⊂ R. A function f ∈ F is continuous at x0 ∈ E if
given ε > 0, ∃δ = δ(f, x0, ε) > 0 such that

|x− x0| < δ and x ∈ E ⇒
∣∣∣f(x)− f(x0)

∣∣∣ < ε.

If δ, independent of f and depending on x0 and ε can be found ∀ε > 0, we say that the family F
is equicontinuous at x0.
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Definition 8. [ Uniformly bounded]: Let 〈fn〉 be a sequence of differentiable functions on a
domain D ⊂ R and let U ⊂ D. Then, we say that 〈fn〉 is uniformly bounded on U , if ∃ a M > 0

such that

|f(x)| ≤M ; ∀x ∈ D and ∀ n ∈ N.

Let F be a family of collection of functions, defined and continuous and real-valued on a compact
subset E ⊂ R. We say that F is uniformly bounded on E if

|f(x)| ≤M ;∀x ∈ E and ∀f ∈ F

Definition 9. [Locally bounded]: A set F ⊂ H(D) is locally bounded if for each point α ∈ D,
there are constants M and ρ > 0 such that

|f(x)| ≤M ; |x− α| < ρ for all f ∈ F

i.e., sup
{
|f(x)| : |x− α| < ρ, f ∈ F

}
<∞

That is, F is locally bounded if about a point α ∈ D, there is a interval on which F is uniformly
bounded, which immediately extends to the requirement thatF is uniformly bounded on a compact
sets in D.

Definition 10. [ Normal convergence]: If a sequence of real functions 〈fn〉 converges on a com-
pact subsets, it is called normal convergence. If a sequence of functions is uniformly bounded on
compact subsets of the domain, it is said to be normally bounded.

THEOREM 21. Ascoli-Arzela Theorem : Let F be a family of collection of continuous, real-
valued function on a compact subset E ⊂ R. Suppose F is uniformly bounded on E. Then the
followings are equivalent:

(i) F is equicontinuous at each point of E

(ii) Every sequence
〈
fn

〉
⊂ F has a uniformly convergent subsequence

〈
fnk

〉
Proof: Let EQ be the set of points of E with rational coordinates as

EQ =
{
rn : rn ∈ Q

}
= E ∩Q

Since Q is countable and dense subset in E, then EQ is countable and EQ = E. As EQ is

countable, we may enumerate the points of EQ by r1, r2, · · · , i.e., EQ =
〈
rn

〉
n≥1

.

Let
〈
fn

〉
be a sequence of F . Since F is uniformly bounded on each compact subset of E and

hence it is pointwise bounded. Thus, if we consider
〈
fn(r1)

〉
n≥1

, then it is a bounded sequence

of real numbers, and so |fn(r1)| ≤ M . By Bolzano-Weierstrass theorem, we have a convergent
subsequence

〈
fn1(r1)

〉
n1≥1

of
〈
fn(r1)

〉
.

Now, consider
〈
fn1(r2)

〉
n1≥1

. Again
∣∣∣fn1(r2)

∣∣∣ ≤ M and so by Bolzano-Weierstrass theo-

rem, ∃ a subsequence
〈
fn2(r2)

〉
of
〈
fn1(r2)

〉
n1≥1

which converges. Note that
〈
fn2(r1)

〉
also

converges.
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By induction, we get for ∀n ≥ 1, a subsequence 〈fnk
〉 of 〈fnk−1

〉 such that
〈
fnk

(rj)
〉

converges
for j ≤ k, and

〈fn1〉 ⊇ 〈fn2〉 ⊇ · · · ⊇ 〈fnk−1
〉 ⊇ 〈fnk

〉 ⊇ · · ·

We get a list of lists:

Converge at
fn1 : fi1(r1)↘ fi2(r1) fi3(r1) · · · r1

fn2 : fj1(r2) fj2(r2)↘ fj3(r3) · · · r1, r2

fn3 : fk1(r3) fk2(r3) fk3(r3)↘ · · · r1, r2, r3
...

... · · ·
...

Consider the subsequence 〈Fl〉, where Fl = lth member of
〈
fnl

〉
, then 〈Fl〉 ⊂

∞⋂
k=1

〈
fnk

〉
, where〈

fnl

〉
converge at the points r1, r2, r3, · · · . If x ∈ EQ, then at x = rl and since

〈
fnl

(rl)
〉

converges we have, the sequence
〈
Ft(rl)

〉
t≥l

converges.

Since F is equicontinuous on E, so is 〈Fl〉l≥1. So given x0 ∈ E, and an ε > 0, ∃δ > 0 with
δ = δ(x0, ε) such that∣∣∣f(x)− f(x0)

∣∣∣ < ε

3
, whenever |x− x0| < δ, ∀f ∈ F (16)

The collection
{
|x − x0| <

δ(x0, ε)

2
: x0 ∈ E

}
is an open cover of E, which is compact, so

admits a finite subcover:{
|x− ζ1| <

δ

2
(ζ1, ε); |x− ζ2| <

δ

2
(ζ2, ε); · · · , |x− ζk| <

δ

2
(ζk, ε)

}
Choose xi1 ∈

{
|x − ζ1| < δ

2(ζ1, ε)
}

; xi2 ∈
{
|x − ζ2| < δ

2(ζ2, ε)
}
· · · ; xik ∈

{
|x − ζk| <

δ
2(ζk, ε)

}
where, xij ∈ EQ =

〈
rn

〉
n≥1

. Note that

|x− xil | ≤ |x− ζil |+ |ζil − xil | < δ(ζl, ε)

⇒
∣∣∣Fm(x)− Fm(xil)

∣∣∣ < ε

3
and

∣∣∣Fn(xil)− Fn(x)
∣∣∣ < ε

3

If x ∈ E, then |x − ζl| < δ(ζl, ε)/2 for some l with 1 ≤ l ≤ k and xil is also in |x − ζk| <
δ(ζk, ε)/2. Let m,n be two positive integers, greater than a large positive integer. Now

|Fm(x)− Fn(x)| =
∣∣∣Fm(x)− Fm(xil) + Fm(xil)− Fn(xil) + Fn(xil)− Fn(x)

∣∣∣
≤

∣∣∣Fm(x)− Fm(xil)
∣∣∣+
∣∣∣Fm(xil)− Fn(xil)

∣∣∣+
∣∣∣Fn(xil)− Fn(x)

∣∣∣
Since 〈Fm〉 converge on EQ and xil ∈ EQ, for the given ε, ∃N (ε, xil) such that∣∣∣Fm(xil)− Fn(xil)

∣∣∣ < ε

3
for m,n ≥ N (ε, xil)
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Thus for m,n ≥ max
{
N (ε, xil) : 1 ≤ l ≤ k

}
we have

|Fm(x)− Fn(x)| < ε independent of x ∈ E
⇒ 〈Fm〉 converges uniformly on E.

This proves the theorem. 2

THEOREM 22. Let fn : [a, b] → R be continuous such that 〈fn〉 are uniformly bounded on
[a, b] and the derivatives f ′n exist and are uniformly bounded on (a, b0. Then fn has a uniformly
convergent subsequence.

Proof: Since f ′n are uniformly bounded on (a, b), there exists M > 0 such that |f ′n(x)| ≤ M ,
∀n ∈ N and for any x ∈ (0, 1). Using the mean value theorem, we get

|fn(x)− fn(y)| ≤M |x− y|; for any x, y ∈ [a, b] and n ∈ N

So, if ε > 0 is given, set δ = ε/(M + 1). Then

|fn(x)− fn(y)| ≤M |x− y|; for any n ∈ N with |x− y| < δ

This shows that 〈fn〉 is equicontinuous. Let us prove that 〈fn〉 has a subsequence which converges
uniformly. The Arzela-Ascoli theorem then supplies the uniformly convergent subsequence.

EXAMPLE 58. Which of the following sequences 〈fn〉 in C[0, 1] must contain a uniformly conver-
gent subsequence?

When {fn(x)} ≤ 3 for all x ∈ [0, 1] and for all n ∈ Na)

When fn ∈ C1[0, 1], |fn(x)| ≤ 3 and |f ′n(x)| ≤ 5 for all x ∈ [0, 1] and for all n ∈ Nb)

Solution: (a) Let fn(x) = xn, for C, implies ||fn|| = 1 for all n ∈ N. To prove that there is no
convergent subsequence for this sequence, it is sufficient to show that any subsequence of 〈fn〉 is
not Cauchy. (Since every convergent sequence is a Cauchy sequence). Observe that:

||f2n − fn|| = sup
x∈[0,1]

(xn − x2n) = sup
x∈[0,1]

(xn − (xn)2) = sup
t∈[0,1]

(t− t2) =
1

4

Since 〈fn〉 is monotonic, we see that

k ≥ 2n⇒ ||fk − fn|| ≥
1

4
.

Now, we have any subsequence of 〈fn〉 then the above estimate shows that this subsequence is not
Cauchy. For any given k0, we can find k′ > k0 such that nk′ > 2nk0 and ||fnk′ − fnk0

|| ≥ 1
4 . So

this option is incorrect.
(b) Let 〈fn〉 be a uniformly bounded sequence of real-valued differentiable functions on [a, b] such
that the derivatives 〈f ′n〉 are uniformly bounded. Then by Arzela-Ascoli theorem, we conclude that
there exists a subsequence of 〈fn〉 that converges uniformly on [a, b]. Thus this option is correct.
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Problem Set

Short answer type questions
1. If f : R → R is continuous and the sequence fn(x) = f(nx) is equicontinuous, what can

be said about f?

Long answer type questions

1. Is the sequence of functions fn : R→ R defined by

fn(x) = cos(n+ x) + log
(

1 +
1√
n+ 2

sin2(nnx)
)

equicontinuous? Prove or disprove.

2. Let f : R → R is continuous and
∫ ∞
−∞
|f(x)|dx < ∞. Show that there is a sequence 〈xn〉

in R such that xn →∞, xnf(xn)→ 0, and xnf(−xn)→ 0 as n→∞.

3. Let 〈fn〉 be a sequence of functions are continuous over [0, 1] and continuously differen-
tiable in (0, 1). Assume that |fn(x)| ≤ 1 and that |f ′n(x)| ≤ 1 for all x ∈ (0, 1) and for each
n ∈ N. Pick the true statements: NBHM’09

fn is uniformly continuous for each n Hints : Since fn is continuous on a compact
set [0, 1]

a)

〈fn〉 contain a subsequence which converges in C[0, 1] Hints : Arzela-Ascoli theoremb)

〈fn〉 is a convergent sequence in C[0, 1]. Hints : fn(x) = (−1)nc)

Ans: 3 (a), (b)

4. Which of the following sequences 〈fn〉 in C[0, 1] must contain a uniformly convergent sub-
sequence? NBHM’15

When {fn(x)} ≤ 3 for all x ∈ [0, 1] and for all n ∈ Na)

When fn ∈ C1[0, 1], |fn(x)| ≤ 3 and |f ′n(x)| ≤ 5 for all x ∈ [0, 1] and for all n ∈ Nb)

When fn ∈ C1[0, 1] and
∫ 1

0
|fn(x)|dx ≤ 1 for all n ∈ N Hints Take the same

example 58 as taken in option (a)

c)

Ans: 4 (b)
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